TY - CONF A1 - Müller, Karsten A1 - Scheidemann, Robert A1 - Auster, Jürgen T1 - Mechanical testing of component size specimen under impact conditons N2 - For validation of structural integrity under normal and hypothetical accident conditions during transport and storage of radioactive material the Federal Institute for Materials Research and Testing (BAM) focuses its safety related scientific research on advanced mechanical safety assessment methods including simulation of high rate impact of model components and structures. A drop and crash test facility with an unyielding target and a load capacity of 1.200 kg was designed for materials testing of component size specimen under impact conditions at elevated and higher loading rates. The maximum drop height is 12 meters which enables impact velocities up to 15 m/s. An exactly falling test object or drop weight allows impact, bending, compression as well as crash and crush tests with maximum input energy of 118 kJ. An arresting unit has been developed to avoid multiple impacts during instrumented drop tests. The paper presents experimental techniques and examples of various measurement methods and advancements in order to assess assumption of materials and components behavior by definite displacement and stresses within mechanical testing. Instrumented drop weight tests are performed to complete materials data base and energy absorption of shock-absorbing materials and structures as well as to implement materials and structural parameters into FEA of reference structures. Furthermore, fracture mechanics parameters of thick walled DCI containers by means of dynamic bending tests are characterized by crack initiation and crack resistance behavior at the lowest operational temperature depending on the strain rate. T2 - PVP2013 - ASME 2013 Pressure vessels & piping division conference CY - Paris, France DA - 14.07.2013 KW - Component size KW - Impact test KW - Dynamic compression KW - J-integral PY - 2013 U6 - https://doi.org/10.1115/PVP2013-98000 IS - PVP2013-98000 SP - 1 EP - 7 AN - OPUS4-28893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten T1 - Comparison of experimental results and numerical simulations of penetration tests with damping concrete N2 - The shock absorbing material damping concrete is for the foundation in dry interim storage facilities for radioactive waste in Germany. In case of a potential cask drop damping concrete minimizes the mechanical loads to the cask. In course of safety analyzes this accident scenario is considered by numerical simulations using the finite element method. To get reliable results of numerical simulations a suitable material model is needed to take the characteristics of damping concrete into account. Due to the lack of sufficient material knowledge a research project was started to characterize the material’s behavior under different load conditions. This paper presents the test program to analyze the material behavior of damping concrete which is characterized by large volume change and strain rate hardening dependence. The determined Parameters were used to adapt an existing material model of the FE-code ABAQUS®. This model has to handle the mechanical damage behavior of damping concrete which occurs under compression and shear loads during a potential cask drop. To verify the material model numerical simulations are compared with dynamic penetration tests, which were conducted with specimens assembled similar to the real application of the damping concrete footings. The transferability of the material model to a real accident scenario was verified by a drop test with a full-scale cask on a damping concrete footing. T2 - ASME 2017 Pressure Vessels & Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Drop test KW - Damping concrete KW - Cask KW - Material model PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A034, 1 EP - 6 PB - The American Society of Mechanical Engineers CY - New York AN - OPUS4-44042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kasparek, Eva Maria A1 - Zencker, Uwe A1 - Scheidemann, Robert A1 - Völzke, Holger A1 - Müller, Karsten T1 - Numerical and experimental studies of polyurethane foam under impact loading N2 - Proper predictions of the behaviour of shock absorber materials are of utmost importance in safety assessments for licensing casks for transport and storage of highly active waste. After having identified significant discrepancies between numerical results and the actual response of polyurethane foam limiters subjected to accidental scenarios, a new research project ENREA was established by BAM. A major objective is to enhance and to develop advanced material models intended to simulate limiters under impact loading. They should account for all major factors influencing the load–deformation relationship like temperature, strain rate and specific stress state. The corresponding test program, applicable plasticity models, the overall parameter identification strategy based on local and global optimization techniques as well as experimental and numerical results are presented here in particular for closed cell foams. KW - Polyurethane foam KW - Limiter KW - Impact loading KW - Strain rate KW - Plasticity model KW - Parameter identification PY - 2011 U6 - https://doi.org/10.1016/j.commatsci.2010.11.025 SN - 0927-0256 VL - 50 IS - 4 SP - 1353 EP - 1358 PB - Elsevier CY - Amsterdam AN - OPUS4-23151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -