TY - JOUR A1 - Dietrich, Paul A1 - Hennig, Andreas A1 - Holzweber, Markus A1 - Thiele, T. A1 - Borcherding, H. A1 - Lippitz, Andreas A1 - Schedler, U. A1 - Resch-Genger, Ute A1 - Unger, Wolfgang T1 - Surface analytical study of poly(acrylic acid)-grafted microparticles (beads): characterization, chemical derivatization, and quantification of surface carboxyl groups N2 - We report a surface analytical study of poly(methyl methacrylate) (PMMA) microparticles (beads) with a grafted shell of poly(acrylic acid) (PAA) with thicknesses up to 4 nm using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy. These polymer microparticles were analyzed before and after reaction of the surface carboxyl (CO2H) groups with 2,2,2-trifluoroethylamine (TFEA) to gain a better understanding of methods with use of covalently bound probe molecules for surface group analysis. The results obtained with chemical derivatization XPS using TFEA are discussed in terms of surface quantification of reactive CO2H groups on these PAA-coated microparticles. A labeling yield of about 50% was found for TFEA-derivatized particles with amounts of surface-grafted CO2H groups of 99 µmol/g or more, which is consistent with predicted reaction yields for homogeneously dispersed PAA hydrogels. KW - Polymer microparticles KW - Poly(acrylic acid)-grafted microparticles KW - Beads KW - XPS KW - SEM KW - NEXAFS KW - Surface analysis KW - Fluorine labeling PY - 2014 U6 - https://doi.org/10.1021/jp505519g SN - 1932-7447 SN - 1089-5639 VL - 118 IS - 35 SP - 20393 EP - 20404 PB - Soc. CY - Washington, DC AN - OPUS4-31326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunner, Claudia A1 - Hoffmann, Katrin A1 - Thiele, T. A1 - Schedler, U. A1 - Jehle, H. A1 - Resch-Genger, Ute T1 - Novel calibration tools and validation concepts for microarray-based platforms used in molecular diagnostics and food safety control N2 - Commercial platforms consisting of ready-to-use microarrays printed with target-specific DNA probes, a microarray scanner, and software for data analysis are available for different applications in medical diagnostics and food analysis, detecting, e.g., viral and bacteriological DNA sequences. The transfer of these tools from basic research to routine analysis, their broad acceptance in regulated areas, and their use in medical practice requires suitable calibration tools for regular control of instrument performance in addition to internal assay controls. Here, we present the development of a novel assay-adapted calibration slide for a commercialized DNA-based assay platform, consisting of precisely arranged fluorescent areas of various intensities obtained by incorporating different concentrations of a 'green' dye and a 'red' dye in a polymer matrix. These dyes present 'Cy3' and 'Cy5' analogues with improved photostability, chosen based upon their spectroscopic properties closely matching those of common labels for the green and red channel of microarray scanners. This simple tool allows to efficiently and regularly assess and control the performance of the microarray scanner provided with the biochip platform and to compare different scanners. It will be eventually used as fluorescence intensity scale for referencing of assays results and to enhance the overall comparability of diagnostic tests. KW - New reference material KW - Microarray KW - Fluorescence KW - Standard KW - Calibration slide PY - 2015 U6 - https://doi.org/10.1007/s00216-014-8450-z SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 11 SP - 3181 EP - 3191 PB - Springer CY - Berlin AN - OPUS4-32580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -