TY - CONF A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Effect of weld penetration on hydrogen-assisted cracking in welding of high-strength structural steels N2 - The need for steels with highest mechanical properties is a result of the increasing demands for energy and resource efficiency. In this context, high-strength low-alloyed (HSLA) structural steels are used in machine, steel and crane construction with yield strength up to 960 MPa. HSLA steels enable lightweight construction by thinner necessary plate thickness. However, welding of HSLA steels requires profound knowledge of three factors in terms of avoidance of hydrogen-assisted cracking (HAC): the interaction of (1) microstructure, (2) local stress/strain and (3) local hydrogen concentration. In addition to the three main factors, the used weld-arc process is also important for the performance of the welded joint, especially when using modern arc variants. In the past, the conventional transitional arc process (Conv. A) was mainly used for welding of HSLA grades. In the past decade, the so-called modified spray arc process (Mod. SA) was increasingly used for welding production. This modified arc enables reduced seam opening angles with increased deposition rates compared to the conventional process. Economic benefits of using this arc type are: a reduced number of necessary weld beads and a lower weld seam volume, which result in decreased total welding time and costs. Nonetheless, investigations on a high-strength S960QL showed significantly higher hydrogen concentrations in the weld metal at a reduced seam opening angle with Mod. SA. This indicates an increased risk for the susceptibility of the welded component to HAC. Hence, existing recommendations on HAC-avoidance cannot be transferred directly to the Mod. SA-process. In the present study, the susceptibility to HAC of the HSLA steel S960QL with same type of filler material was investigated. For that purpose, both Conv. A and Mod. SA were used with same weld heat input at different deposition rates. For assessment of the HAC susceptibility, the externally loaded Implant-test was used. Both conducted test series with Conv. A and Mod. SA showed similar crack critical stress of about 280 MPa. Below this value, no delayed fracture appeared. The welds with Mod. SA showed higher hydrogen concentrations. The fracture occurred in the heat-affected zone (HAZ) or in the weld metal (WM). But in all specimens, cracks initiated at the notch root of the spiral notch of the implants within the coarse-grained HAZ. However, the test series with Mod. SA showed a significant extension of the time-to-failure of several hours compared to tests carried out with Conv. A. The reason is the deeper weld penetration in case of Mod. SA, which causes longer diffusion path for hydrogen. The fracture topography of the ruptured implant specimens with Conv. A was typical ductile in specimen center and quasi-cleavage like at the edge of the specimens. When using Mod. SA, the topography changed to primarily quasi-cleavage fracture topography with shares of intergranular fracture and secondary crack appearance. T2 - IIW Intermediate Meeting: Commission II-A CY - Miami, FL, USA DA - 12.03.2019 KW - High-strength steel KW - Hydrogen-assisted cracking KW - Welding KW - Implant-test PY - 2019 AN - OPUS4-47609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Lippold, J. ED - Boellinghaus, Thomas ED - Richardson, I. T1 - Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa are gaining popularity in civil engineering and construction of heavy vehicles. With increasing yield strength, the susceptibility for degradation of the mechanical properties in the presence of diffusible hydrogen, i.e., hydrogen-assisted cracking (HAC), generally increases. HAC is a result of the critical interaction between local microstructure, mechanical load, and hydrogen concentration. In existing standards for welding of HSLA-steels, recommendations including working temperatures and dehydrogenation heat treatment (DHT) are given to Limit the amount of introduced hydrogen during welding. These recommendations are based on investigations into conventional arc welding processes. In the past decade, modern weld technologies were developed to enable welding of narrower weld seams with V-grooves of 30°, e.g., the modified spray arc process. In that connection, a reduced number of weld runs and weld volume are important technical and, economic benefits. In the present study, the hydrogen distribution in S960QL multi-layer welds with thickness of 20 mm was analyzed. The influence of different weld seam opening angles, heat input, working temperature and DHT were investigated. The results show that weldments with narrow grooves contained an increased amount of diffusible hydrogen. Hydrogen concentration has been reduced by decreasing both the heat input and working temperature. Hydrogen-free weldments were only achieved via subsequent DHT after welding. Furthermore, hydrogen distribution was experimentally determined across the weld seam thickness in HSLA gas metal arc welded multi-layer welds for the first time. KW - Hydrogen KW - GMAW KW - High-strength steels KW - Heat control KW - Heat treatment PY - 2019 DO - https://doi.org/10.1007/s40194-018-00682-0 SN - 0043-2288 SN - 1878-6669 VL - 63 IS - 3 SP - 607 EP - 616 PB - Springer CY - Berlin Heidelberg AN - OPUS4-47878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Schaupp, Thomas A1 - Kannengießer, Thomas T1 - Welding stress control in high-strength steel components using adapted heat control concepts N2 - High-strength steels are increasingly applied in modern steel constructions to meet today’s lightweight requirements. Welding of these steels demands a profound knowledge of the interactions between the welding process, cooling conditions, heat input, and the resulting metallurgical occurrences in the weld and its vicinity. Additionally, welding stresses may be detrimental for the safety and performance of high-strength steel component welds during fabrication and service, especially due to the high yield ratio. For a development of strategies to adjust welding heat control, all these effects should be considered, to reach a complete exploitation of the high-strength steel potential. In recent researches at BAM, multilayer GMAW experiments were performed with high-strength steels, in which cooling conditions and resulting microstructure were analyzed for varied heat control parameters. The application of a unique 3d-operating testing facility and X-ray diffraction measurements allowed the analysis of local stresses in the weld while welding and cooling under component relevant shrinkage restraints. As a result, correlations between material behavior, welding, and cooling condition and the arising multi-axial stresses and forces were found. Based on this study, statements for the development of adapted heat control concepts were derived, which are presented by means of specific analysis examples. KW - Residual stresses KW - GMA welding KW - Restraint KW - High-strength steels KW - Process parameters PY - 2019 DO - https://doi.org/10.1007/s40194-018-00691-z SN - 0043-2288 VL - 63 IS - 3 SP - 647 EP - 661 PB - Springer AN - OPUS4-48006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -