TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Krafft, Bernd A1 - Rybak, Thomas A1 - Schartel, Bernhard T1 - Multilayer Graphene/Carbon Black/Chlorine Isobutyl Isoprene Rubber Nanocomposites N2 - High loadings of carbon black (CB) are usually used to achieve the properties demanded of rubber compounds. In recent years, distinct nanoparticles have been investigated to replace CB in whole or in part, in order to reduce the necessary filler content or to improve performance. Multilayer graphene (MLG) is a nanoparticle made of just 10 graphene sheets and has recently become commercially available for mass-product nanocomposites. Three phr (part for hundred rubbers) of MLG are added to chlorine isobutyl isoprene rubber (CIIR)/CB composites in order to replace part of the CB. The incorporation of just 3 phr MLG triples the Young’s modulus of CIIR; the same effect is obtained with 20 phr CB. The simultaneous presence of three MLG and CB also delivers remarkable properties, e.g. adding three MLG and 20 phr CB increased the hardness as much as adding 40 phr CB. A comprehensive study is presented, showing the influence on a variety of mechanical properties. The potential of the MLG/CB combination is illustrated to reduce the filler content or to boost performance, respectively. Apart from the remarkable mechanical properties, the CIIR/CB/MLG nanocomposites showed an increase in weathering resistance. KW - nanocomposites KW - rubber KW - multilayer graphene KW - carbon black PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-358569 SN - 2073-4360 VL - 8 SP - 95 PB - MDPI CY - Basel, Switzerland AN - OPUS4-35856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Towards Fire and Flame Retardant Composites T2 - 7th Asia-Europe Symposium on Processing and Properties of Reinforced Polymers, AESP7 CY - Madrid, Spain DA - 2015-02-04 PY - 2015 AN - OPUS4-32632 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Gettwert, V. A1 - Korzen, Manfred T1 - Protecting the structural integrity of composites in fire: Intumescent coatings in the intermediate scale N2 - The fire behaviour of light-weight material used in structural applications is regarded as the main challenge to be solved for mass transportation. The task is to perform realistic experiments, including a mechanical test scenario under fully developed fires, to improve the material's reliability in structural applications. Our approach utilises an intermediate-scale test set-up (specimen size 500 × 500 mm) to apply realistic compressive loads and fully developed fires directly to one side of a carbon-fibre-reinforced sandwich composite. Three different intumescent coatings were applied to sandwich structures and compared to a bench-scale study. The results emphasise intumescent coatings as a promising method to sustain fire resistance, multiplying the time to failure. Nevertheless, the realistic intermediate-scale test using severe direct flame application underlines the extremely short failure times when the actual composite components are tested without any additional insulation. KW - Carbon-fibre-reinforced KW - Fire stability KW - High-temperature properties KW - Mechanical testing KW - Fully developed fire KW - Post-crash scenario PY - 2015 U6 - https://doi.org/10.1177/0731684415609791 SN - 0731-6844 SN - 1530-7964 VL - 34 IS - 24 SP - 2029 EP - 2044 PB - Technomic Publ. Co. CY - Westport, Conn. AN - OPUS4-35120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Multifunctional multilayer graphene/elastomer nanocomposites N2 - Elastomers are usually reinforced and employed in different applications. Various different nanoparticles, including layered silicates, carbon nanotubes, and expanded graphite, are currently being used as nanofiller. Multilayer Graphene (MLG) is proposed as promising nanofiller to improve the functional properties of Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR) and Styrene–Butadiene Rubber (SBR) at low concentrations. MLG is constituted by only approximately 10 graphene sheets. Nanocomposites with extremely low MLG content (3 phr) showed evident improvement in rheological, mechanical and curing properties. The Young's modulus of the nanocomposites increased more than twice in comparison with the unfilled rubbers. MLG also improved the weathering resistance of the different rubbers. The nanocomposites conserved their initial mechanical properties against weathering exposure. KW - Elastomer KW - Nanocomposite KW - Multilayer graphene PY - 2015 U6 - https://doi.org/10.1016/j.eurpolymj.2015.07.050 SN - 0014-3057 SN - 1873-1945 VL - 71 SP - 99 EP - 113 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-33843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame Retardancy A Bunch of Thoughts N2 - The presentation gives an overview of actual research adtivities in the field of flame retardant polymers. Details are selected illuminating the scientific topic beyond the state of the art. Different concepts are illustrated with own results obtained in different Research projects over the last 15 years. T2 - public lecture at CIATEC CY - León, Guanajuato, México DA - 06.02.2019 KW - Flame retardant KW - Modes of action KW - Mechanisms KW - Fire testing KW - Pyrolysis KW - Calorimetry PY - 2019 AN - OPUS4-50078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, I. A1 - Kebelmann, Katharina A1 - Risse, S. A1 - Dieguez-Alonso, A. A1 - Schartel, Bernhard A1 - Strecker, C. A1 - Behrendt, F. T1 - Hydroliquefaction of Two Kraft Lignins in a Semibatch Setup under Process Conditions Applicable for Large-Scale Biofuel Production N2 - Hydroliquefaction is a possible pathway to produce liquid transportation fuels from solid feedstocks like coal or biomass. Though much effort has been put into the investigation of maximizing the oil yield using expensive catalysts and pasting oils in batch setups, little is known about how to commercialize the process. This work aims at the demonstration of lignin hydroliquefaction under conditions interesting for commercial operation. The results from hydroliquefaction experiments of two different lignin types using a cheap iron-based catalyst and anthracene oil as the pasting oil in a semibatch system are presented here. Oil yields of above 50% are reached without observing coke formation. Extensive analyses of the feedstocks and product oils were performed. The process supplies high-quality oil, while differences in the decomposition path of both lignin types are observed. An high heating value of 39 400 J/g and H/C and O/C ratios of up to 1.6 and 0.1, respectively, are detected for the produced bio-oils. KW - Lignin KW - Hydroliquefaction KW - Biofuel PY - 2019 U6 - https://doi.org/10.1021/acs.energyfuels.9b02572 SN - 0887-0624 SN - 1520-5029 VL - 33 IS - 11 SP - 11057 EP - 11066 PB - ACS AN - OPUS4-50102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flammschutz für technische Kunststoffte für elektronische Anwendungen N2 - Das Brandverhalten stellt wie das ausgezeichnete elektrische Isolationsverhalten, die geringen elektrischen Verluste, die Verarbeitbarkeit und Formbarkeit eine der wesentlichen Schlüsseleigenschaften im Eigenschaftsprofil von Polymerwerkstoffen in der Elektronik und der Elektrotechnik dar. Dabei bedarf es einer Ausrüstung der Polymerwerkstoffe mit Flammschutzmittel. Die Entwicklung von immer effizienteren, synergistischen und multifunktionalen Multikomponentensystemen ist dabei eine herausragende Quelle für Innovation. Die Entwicklung und Verbesserung der werkstoff- und anwendungsspezifischen Flammschutzlösungen bestimmen die aktuellen und zukünftigen Polymermaterialien in der Elektronik und Elektrotechnik mit. Der Vortrag stellt anhand von Beispielen einige der erfolgreichen Konzepte dar. Es wird versucht, über das wissenschaftlich-systematische Verständnis Grundprinzipien und vielversprechende Lösungsstrategien zu verdeutlichen. T2 - Kunststoff trifft Elektronik, KUZ Kunststoffzentrum in Leipzig CY - Leipzig, Germany DA - 29.01.2020 KW - Flame retardant KW - Ssynergy KW - Flame retardant mode of action KW - UL 94 KW - Cone calorimeter PY - 2020 AN - OPUS4-50495 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Combination of phosphorous flame retardants and aluminum trihydrate in multicomponent EPDM composites N2 - Ethylene propylene diene monomer (EPDM) Rubbers with the flame retardants tris(2-ethylhexyl)phosphate, ammonium polyphosphate, polyaniline, and aluminum trihydroxide were prepared and analyzed in this study. The homogenous dispersion of the fillers in the rubber matrix was confirmed by scanning electron microscope. To investigate the interplay of the different flame retardants, the flame retardants were varied systematically. The comprehensive study sought combinations of flame retardants that allow high loadings of flame retardants without deterioration of the physical and mechanical properties of the EPDM rubber. The eight EPDM rubbers were investigated via thermogravimetric analysis and pyrolysis gas chromatography coupled with a mass spectrometer (Py GC/MS) to investigate the potential synergistic effects. In the Py-GC/MS experiments, 27 pyrolysis products were identified. Furthermore, UL 94, limiting oxygen index, FMVSS 302, glow wire tests, and cone calorimeter tests were carried out. In the cone calorimeter test the EPDM rubbers R-1AP and R-1/2P achieved an increase in residue at flameout of 76% and a reduction in total heat evolved of about 35%. Furthermore, the compounds R-1AP and R-1/2P achieved a reduction in MARHE to about 150 kW m−1, a reduction of over 50% compared to the unprotected rubber R. KW - EPDM KW - Rubber KW - Aluminum hydroxide (ATH) KW - Phosphorous flame retardant PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-502859 SN - 1548-2634 VL - 60 IS - 2 SP - 267 EP - 280 PB - Wiley AN - OPUS4-50285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Günther, Martin T1 - Flame retardancy of polyurethanes N2 - Polyurethanes (PU) represent one of the most versatile classes of plastics. They are processed and used as thermoplastic, elastomer, and thermoset. The requirements regarding flammability are correspondingly versatile. Depending on the material and the field of application, specific fire tests have to be fulfilled. This paper describes the different concepts used to fulfil these requirements by choosing the right raw materials and flame retardants. KW - Polyurethane KW - Flame retardant KW - Foam KW - Flammability KW - Pyrolysis KW - Cone calorimeter PY - 2020 VL - 17 IS - 1 SP - 44 EP - 48 PB - Dr. Gupta AN - OPUS4-50737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabe, Sebastian A1 - Sanchez-Olivares, G. A1 - Pérez-Chávez, R. A1 - Schartel, Bernhard ED - Laoutid, F. T1 - Natural Keratin and Coconut Fibres from Industrial Wastes in Flame Retarded Thermoplastic Starch Biocomposites N2 - Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these Kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties. KW - Biomaterials KW - Biodegradation KW - Calorimetry KW - Composites KW - Flame retardance PY - 2020 SN - 978-3-03928-350-7 SN - 978-3-03928-351-4 SP - 45 EP - 66 PB - MDPI AN - OPUS4-50738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -