TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André T1 - Temperature inside burning polymer specimens: Pyrolysis zone and shielding JF - Fire and materials N2 - On the basis of two examples, temperature measurements are proposed within burning polymer specimen during the cone calorimeter test; especially to gain deeper insight into the actual pyrolysis conditions and flame retardancy mechanism. The heating and pyrolysis within a poly(methyl methacrylate) specimen were characterized, discussing the characteristic maximum heating rates (165-90°Cmin-1 decreasing with depth within the specimen and >275°Cmin-1 at the initial surface), pyrolysis temperature (454-432°C decreasing in accordance with decreasing heating rates), thickness of the pyrolysis zone (0.5-1.3 mm) and its velocity (1.2-2.1 mm min-1) as a function of sample depth and burning time. Thermally thick behaviour corresponds to a pyrolysis zone thickness of 0.74 mm and a velocity of 1.51 mm min-1 and occurs until the remaining specimen thickness is less than 8 mm. The shielding effect against radiation occurring in a layered silicate epoxy resin nanocomposite was investigated. It is the main flame retardancy effect of the silicate-carbon surface layer formed under fire. The reradiation from the hot surface is increased by a factor of around 4-5 when an irradiance of 70kWm-2 is applied. The energy impact into the pyrolysis zone is crucially reduced, resulting in a reduction of fuel production and thus heat release rate. KW - Cone calorimeter KW - Pyrolysis KW - Nanocomposite KW - Poly(methyl methacrylate) KW - Pyrolysis zone KW - Pyrolysis front KW - Shielding effect PY - 2010 DO - https://doi.org/10.1002/fam.1007 SN - 0308-0501 SN - 1099-1018 VL - 34 IS - 5 SP - 217 EP - 235 PB - Heyden CY - London AN - OPUS4-21724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Perret, Birgit A1 - Schartel, Bernhard A1 - Stöß, K. A1 - Diederichs, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Krämer, J. A1 - Altstädt, V. ED - Lewin, M. T1 - Novel phosphorus-based flame retardants for epoxy resins and carbon fiber composites: Decomposition mechanisms and fire behavior T2 - 21st Annual conference on recent advances on flame retardancy of polymeric materials T2 - 21st Annual conference on recent advances on flame retardancy of polymeric materials CY - Stamford, USA DA - 2010-05-24 KW - DOPO KW - Fire retardancy KW - Flammability KW - Pyrolysis KW - Epoxy resin KW - Composites PY - 2010 SN - 1-59623-619-1 VL - 21 SP - 134 EP - 145 PB - BCC Research AN - OPUS4-22162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -