TY - CHAP A1 - Böhning, Martin A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard ED - Yaragalla, S. ED - Kumar Mishra, R. ED - Thomas, S. ED - Kalarikkal, N. ED - Maria, H. J. T1 - Multilayer Graphene/Elastomer Nanocomposites T2 - Carbon-based Nanofillers and their Rubber Nanocomposites N2 - Elastomers are usually reinforced by large amount of fillers like carbon black (CB) or silica in order to improve various mechanical properties, such as Young’s modulus, hardness, tear resistance, abrasion resistance, and gas barrier properties. In recent years, such improvements were also obtained by using nanoparticles at significantly lower filler loadings. Graphene is a twodimensional (2D) sheet of a thickness in the atomic scale, composed of a honeycomb structure of sp2 carbon atoms. Besides significant mechanical reinforcement, graphene harbors the potential to be used as a multifunctional filler, as it can also increase the conductivity and weathering stability of elastomer matrices. Ultraviolet (UV) irradiation and oxidative agents can lead to the degradation of elastomers due to a multistep photooxidative process, including the formation of radicals. Carbon-based fillers have an influence on these reactions, as they can absorb UV radiation and act as radical scavengers. This chapter summarizes the results of our larger project on multilayer graphene (MLG)/elastomer nanocomposites, previously published, which present a comprehensive case study of MLG as a multifunctional nanofiller in elastomer/graphene nanocomposites. Different elastomeric matrices are compared in order to demonstrate the outstanding impact of MLG as a general benefit. The dependency of this effect on concentration is discussed in detail. Taking into account the key role of dispersion, different mixing procedures are compared, evaluating a facile implementation of graphene nanocomposites into conventional rubber processing. Finally, the most probable commercial uses of MLG nanofillers in combination with conventional CB are studied. The nanocomposites were prepared in the kg scale in order to obtain enough specimens to investigate various properties of the uncured and vulcanized rubbers at the highest quality level, including rheology, curing, morphology, several mechanical properties, abrasion, conductivity, gas permeation, burning behavior, and weathering stability. The structure property relationships are asserted and questioned, for example, by investigating the radical scavenging ability or aspect ratio of the MLG. This chapter illustrates the state of the art of graphene/rubber nanocomposites targeted for commercial mass applications. KW - Nanocomposite KW - Graphene KW - Rubber KW - Reinforcement KW - Durability KW - Masterbatch KW - Gas Barrier Properties KW - Conductivity PY - 2019 SN - 978-0-12-817342-8 SP - 139 EP - 200 PB - Elsevier AN - OPUS4-47408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Pikacz, E. A1 - Seefeldt, Henrik A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Karrasch, Andrea A1 - Jäger, Christian T1 - Flame retardancy in PC/Silicone rubber blends using BDP and additional additives T2 - 20th Annual conference on recent advances in flame retardancy of polymeric materials (Proceedings) T2 - 20th Annual conference on recent advances in flame retardancy of polymeric materials CY - Stamford, CT, USA DA - 2009-06-01 KW - Flame retardancy KW - PC blend KW - Aryl phosphate PY - 2009 SN - 1-59623-509-8 VL - 20 IS - Chapter IV-B SP - 236 EP - 246 CY - Wellesley, MA, USA AN - OPUS4-20703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabe, Sebastian A1 - Sanchez-Olivares, G. A1 - Pérez-Chávez, R. A1 - Schartel, Bernhard ED - Laoutid, F. T1 - Natural Keratin and Coconut Fibres from Industrial Wastes in Flame Retarded Thermoplastic Starch Biocomposites T2 - Advanced Flame Retardant Materials N2 - Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these Kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties. KW - Biomaterials KW - Biodegradation KW - Calorimetry KW - Composites KW - Flame retardance PY - 2020 SN - 978-3-03928-350-7 SN - 978-3-03928-351-4 SP - 45 EP - 66 PB - MDPI AN - OPUS4-50738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Morgan, A. ED - Wilkie, C. T1 - Considerations regarding specific impacts of the principal fire retardancy mechanisms in nanocomposites T2 - Flame Retardant Polymer Nanocomposites KW - Nanocomposites KW - Fire retardancy KW - Layered silicate KW - Cone calorimeter KW - Multiwall carbon nanotubes KW - LOI KW - UL 94 PY - 2007 SN - 978-0-471-73426-0 IS - Kap. 5 SP - 107 EP - 129 PB - John Wiley & Sons, Ltd. CY - New York AN - OPUS4-14844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Wilkie, C. A. ED - Morgan, A.B. T1 - Uses of fire tests in materials flammability development T2 - Fire retardancy of polymeric materials PY - 2010 SN - 978-1-4200-8399-6 IS - Chapter 15 SP - 387 EP - 420 PB - CRC Press CY - Boca Raton, FL, USA ET - Second Edition AN - OPUS4-21085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Troitzsch, J. ED - Antonatus, E. T1 - The Burning of Plastics T2 - Plastics Flammability Handbook N2 - The burning of a polymer is a physico–chemical process strongly influenced by the coupling of a chemical reaction – oxidation of fuel – in the gas phase with a chemical decomposition reaction – pyrolysis – in the condensed phase via heat and mass transfer. The heat and mass flux control the intensity of fire and the ablation of fuel. Indeed, the temperature profile as a function of time may be one of the most important responses of a specimen to understand its burning behavior. Further, several physical phenomena, such as the heat absorption of the materials, thermal conductivity, and also melt flow and dripping, play a major role in determining ignition, flammability, and fire behavior. The burning of a polymer is very complex. The various phenomena interact with each other, e. g., pyrolysis also influences the viscosity of the melt, and, thus, whether dripping or charring results in a protective layer, increasing the shielding effect of the residual protective layer. Only a detailed and comprehensive description opens the door to a well-founded understanding of the burning behavior of polymeric materials. KW - Fire behaviour KW - Plastics KW - Pyrolysis KW - Decomposition KW - Ignition KW - Smoldering KW - Flame spread KW - Steady burning KW - Fire load KW - Fire resistance PY - 2021 SN - 978-1-56990-762-7 SP - 23 EP - 52 PB - Hanser CY - Munich ET - 4th Edition AN - OPUS4-52684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Hu, Y. ED - Wang, X. T1 - Influence of the Size and Dispersion State of Two-Dimensional Nanomaterials on the Fire Safety of Polymers T2 - Two-Dimensional Nanomaterials for Fire-Safe Polymers N2 - Only the nano-scaled structure of the nanocomposite and the dispersion of nanoparticles within the polymer matrix harbor multifunctional potential including superior fire retardancy. Thus, this chapter focuses on the dispersion of nanoplates, based mainly on studies of layered silicates and graphene/graphene-related nanoplates. The nanostructure and properties of the nanocomposites are dependent mainly on thermodynamic and kinetic factors during preparation. Improving nano-dispersion often directly improves flame retardancy. Therefore, the modification of the nanoplates as well as the preparation of nanocomposites becomes very important to control this dispersion. The dispersion of nanoplates functions as a prerequisite for the formation of an efficient protective layer, changing the melt flow and dripping behavior, or the improvement of the char properties. KW - Nanocomposite KW - Flame retardancy KW - 2D nanoparticle KW - Exfoliation KW - Dispersion KW - Flammability PY - 2023 SN - 978-1-032-35268-8 SN - 978-1-032-35502-3 SN - 978-1-003-32715-8 DO - https://doi.org/10.1201/9781003327158-2 SP - 23 EP - 58 PB - CRC Press CY - Boca Raton AN - OPUS4-58290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Morgan, A.B. T1 - Multicomponent Flame Retardants T2 - Non-Halogenated Flame Retardant Handbook N2 - The important take home message of this chapter: When multicomponent flame retardant systems are applied to polymeric materials, it becomes possible to address multiple fire properties, increase efficiency, and minimize flame retardant use to maximize polymer property balance. Flame retardants are combined or used together with adjuvants or synergists; fibers and fillers make a crucial contribution to their fire properties. Multicomponent systems are discussed in their capacity as an overall powerful strategy for achieving and optimizing non-halogenated flame-retardant polymeric materials. KW - Flame retardants KW - Synergy KW - Adjuvants KW - Fillers KW - Fibres PY - 2022 SN - 978-1-119-75056-7 SP - 413 EP - 474 PB - Scrivener Publishing LLC CY - Bevery ET - 2nd Edition AN - OPUS4-54426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard A1 - Kebelmann, Katharina ED - Hu, Y. ED - Wang, X. T1 - Fire testing for the development of flame retardant polymeric materials T2 - Flame retarded polymeric materials N2 - Flame retarded polymeric materials are used in various applications in which a certain fire behavior is demanded. Protection goals are defined, such as limited flammability in terms of hindered sustained ignition or limited contribution to a fire, and these protection levels are tested with defined specimens or components in defined fire scenarios, that is to say, different fire tests. Passing a specific fire test by meeting whatever its demands is often the most important development goal, so the parameters of the different fire tests vary widely to emphasize different fire properties. Some fire tests are used to screen or provide a general assessment of flame retardant polymers during development, while other fire tests and tailored experiments are performed to address special phenomena or understand the flame retardancy modes of action. For all fire testing, the devil is in the details – demanding know-how and crucial efforts to manage the quality of investigations and advanced interpretation. This chapter aims to offer a structured overview of all these aspects. KW - Fire testing KW - Flame retardant KW - Fire retardant KW - Flammability KW - Ignition KW - Oxygen index KW - Cone calorimeter KW - UL 94 KW - Developing fire KW - Uncertainty KW - Fire resistance PY - 2020 SN - 978-1-138-29578-7 SP - 35 EP - 55 PB - CRC Press AN - OPUS4-50236 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard A1 - Richter, K. H. A1 - Böhning, Martin ED - Morgan, A. B. ED - Wilkie, C. A. ED - Nelson, G. L. T1 - Synergistic use of talc in halogen-free flame retarded polycarbonate/Acrylonitrile-butadiene-styrene blends T2 - Fire and polymers VI: New advances in flame retardant chemistry and science N2 - Pyrolysis, flammability, fire behavior, melt viscosity, and gas diffusion of bisphenol A polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) were investigated, with bisphenol A bis(diphenyl phosphate) (BDP), with 10 wt.% talc and with BDP in combination with 5, 10 and 20 wt.% talc, respectively. Compared to PC/ABS, PC/ABS + BDP results in an increased decomposition temperature of PC, a higher char yield, a significantly increased LOI, a V-0 classification in UL 94, a reduced peak heat release rate (pHRR), and a reduced total heat release (THR) in the cone calorimeter. This efficient flame retardancy is due to mechanisms in both the gas and condensed phases. PC/ABS + 10 wt.% talc shows a decrease in the PC decomposition temperature. The fire behavior is improved in part compared to PC/ABS, with an increased LOI and reduced pHRR. PC/ABS + BDP + 10 wt.% talc shows a strong synergism in LOI, a V-0 classification, and a decrease in pHRR, whereas THR is slightly increased compared to PC/ABS + BDP. Talc decreases the gas diffusion and enhances the flow limit for low shear rates, both of which influence the pyrolysis and flammability results. Further, talc improves the protection properties of the fire residues. Nevertheless it also partly suppresses flame inhibition and the charring effect of BDP. The synergism between BDP and talc in LOI is obtained even for low talc loadings in PC/ABS + BDP + talc, whereas for higher loadings saturation is observed. KW - Flame retardancy KW - PC/ABS KW - Aryl phosphate KW - Talc PY - 2012 SN - 978-0-8412-2780-4 DO - https://doi.org/10.1021/bk-2012-1118.ch002 N1 - Serientitel: ACS Symposium Series – Series title: ACS Symposium Series VL - 1118 IS - Chapter 2 SP - 15 EP - 36 PB - Oxford University Press AN - OPUS4-27563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -