TY - JOUR A1 - Hofmann, D. A1 - Wartig, K.-A. A1 - Thomann, R. A1 - Dittrich, Bettina A1 - Schartel, Bernhard A1 - Mülhaupt, R. T1 - Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene N2 - Functionalized graphene nanosheets TRGO and MLG 250, prepared from thermally reduced graphite oxide, represent attractive carbon additives for improving the performance of flame retardant polypropylene (PP-FR). The influence of carbon nanofiller type and content on morphology, thermal, mechanical, and electrical properties as well as the fire behavior of melt-extruded PP-FR is investigated. In contrast to conventional nano- and micron-sized carbon fillers such as expanded graphite (EG 40), nano-scaled carbon black (CB), and multiwall carbon nanotubes (CNT), only TRGO and MLG 250 afford uniform dispersion combined with simultaneously improved stiffness (+80%), electrical conductivity (3 × 10-5 S · cm-1) and enhanced flame retardancy of PP-FR, as expressed by lower peak heat release rate (-76%). KW - Extrusion KW - Flame retardance KW - Graphene KW - Nanocomposite KW - Polypropylene PY - 2013 DO - https://doi.org/10.1002/mame.201200433 SN - 1438-7492 SN - 1439-2054 VL - 298 IS - 12 SP - 1322 EP - 1334 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Flame Retardancy Mechanisms of Aluminium Phosphinate in Combination with Melamine Cyanurate in Glass-Fibre-Reinforced Poly(1,4-butylene terephthalate) N2 - The flame retardancy mechanisms of aluminium diethylphosphinate (AlPi) and its combination with melamine cyanurate (MC) in glass-fibre-reinforced poly(butylene terephthalate) (PBT/GF) were analysed using TGA including evolved gas analysis (TGA-FTIR), cone calorimeter measurements using various irradiations, flammability tests (limited oxygen index, LOI, UL 94) and chemical analyses of residues (FTIR, SEM/EDX). AlPi decomposed mainly through the formation of diethylphosphinic acid and aluminium phosphate and influenced the decomposition of the PBT only slightly. AlPi acted mainly through flame inhibition. A halogen-free V-0 PBT/GF material was achieved with a LOI of 44%. Additional charring influenced the flammability. MC decomposed independently of the polymer and showed some fuel dilution effects. KW - Flame retardance KW - Metal phosphinate KW - Polyester KW - Pyrolysis KW - Thermogravimetric analysis PY - 2008 DO - https://doi.org/10.1002/mame.200700330 SN - 1438-7492 SN - 1439-2054 VL - 293 IS - 3 SP - 206 EP - 217 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-17122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Dittrich, Bettina A1 - Farooq, Muhammad A1 - Kerling, S. A1 - Wartig, K.-A. A1 - Hofmann, D. A1 - Huth, Christian A1 - Okolieocha, C. A1 - Altstädt, V. A1 - Schönhals, Andreas A1 - Schartel, Bernhard T1 - Carbon-based nanofillers/poly(butylene terephthalate): thermal, dielectric, electrical and rheological properties N2 - The influence of distinct carbon based nanofillers: expanded graphite (EG), conducting carbon black (CB), thermally reduced graphene oxide (TRGO) and multi-walled carbon nanotubes (CNT) on the thermal, dielectric, electrical and rheological properties of polybutylene terephthalate (PBT) was examined. The glass transition temperature (Tg) of PBT nanocomposites is independent of the filler type and content. The carbon particles act as nucleation agents and significantly affect the melting temperature (Tm), the crystallization temperature (Tc) and the degree of crystallinity of PBT composites. PBT composites with EG show insulating behaviour over the tested concentration range of 0.5 to 2 wt.-% and hardly changed rheological behaviour. CB, CNT and TRGO induce electrical conductivity to their particular PBT composites by forming a conducting particle network within the polymer matrix. CNT reached the percolation threshold at the lowest concentration (<0.5 wt.-%), followed by TRGO (<1 wt.-%) and CB (<2 wt.-%). With the formation of a particle network, the flow behaviour of composites with CB, CNT and TRGO is affected, i.e., a flow limit occurs and the melt viscosity increases. The degree of influence of the carbon nanofillers on the rheological properties of PBT composites follows the same order as for electrical conductivity. Electrical and rheological results suggest an influence attributed to the particle dispersion, which is proposed to follow the order of EG<< CB13% and achieving V-1 behaviour) of the epoxy resin and composites. Under forced flaming only the flame inhibition of the additive compound 1 acts sufficiently. Lastly, the superior key mechanical properties of the epoxy resin and composite based on 2 are sketched. KW - Decomposition KW - DOPO KW - Flame retardancy KW - Composites KW - Thermosets PY - 2008 DO - https://doi.org/10.1016/j.eurpolymj.2008.01.017 SN - 0014-3057 SN - 1873-1945 VL - 44 IS - 3 SP - 704 EP - 715 PB - Elsevier CY - Oxford AN - OPUS4-16708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard T1 - Novel phosphorus-modified polysulfone as a combined flame retardant and toughness modifier for epoxy resins N2 - A novel phosphorus-modified polysulfone (P-PSu) was employed as a combined toughness modifier and a source of flame retardancy for a DGEBA/DDS thermosetting system. In comparison to the results of a commercially available polysulfone (PSu), commonly used as a toughness modifier, the chemorheological changes during curing measured by means of temperature-modulated DSC revealed an earlier occurrence of mobility restrictions in the P-PSu-modified epoxy. A higher viscosity and secondary epoxy-modifier reactions induced a sooner vitrification of the reacting mixture; effects that effectively prevented any phase separation and morphology development in the resulting material during cure. Thus, only about a 20% increase in fracture toughness was observed in the epoxy modified with 20 wt.% of P-PSu, cured under standard conditions at 180 °C for 2 h. Blends of the phosphorus-modified and the standard polysulfone (PSu) were also prepared in various mixing ratios and were used to modify the same thermosetting system. Again, no evidence for phase separation of the P-PSu was found in the epoxy modified with the P-PSu/PSu blends cured under the selected experimental conditions. The particular microstructures formed upon curing these novel materials are attributed to a separation of PSu from a miscible P-PSu–epoxy mixture. Nevertheless, the blends of P-PSu/PSu were found to be effective toughness/flame retardancy enhancers owing to the simultaneous microstructure development and polymer interpenetration. KW - Flame retardants KW - Phosphorus-modified polysulfone KW - Fracture toughness PY - 2007 SN - 0032-3861 SN - 1873-2291 VL - 48 IS - 3 SP - 778 EP - 790 PB - Springer CY - Berlin AN - OPUS4-14515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artner, J. A1 - Ciesielski, M. A1 - Walter, O. A1 - Döring, M. A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Schartel, Bernhard T1 - A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems N2 - 10-Ethyl-9-oxa-10-phosphaphenanthrene-10-oxide (1) can be nitrated using acetic anhydride and fuming nitric acid. The nitro group is reduced using palladium on charcoal and hydrogen. These reaction conditions are used for the synthesis of an analogous DOPO-based diaminic hardener (7). An evaluation of the curing behavior, mechanical properties and flammability of a neat resin made of DGEBA and 7 (DGEBA + 7) and of a carbon fiber-reinforced resin made of DGEBA, 4,4-diaminodiphenylsulfon (DDS) and 7 (DGEBA + DDS + 7) shows the potential of this hardener to lead to flame-retardant systems while keeping relevant properties on a high level; especially when compared to a similar system (DGEBA + DDS + 1). KW - Composites KW - Epoxy resins KW - Synthesis KW - Flame retardancy KW - Mechanical properties PY - 2008 DO - https://doi.org/10.1002/mame.200700287 SN - 1438-7492 SN - 1439-2054 VL - 293 IS - 6 SP - 503 EP - 514 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-17624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Böhning, Martin A1 - Krafft, Bernd A1 - Schartel, Bernhard T1 - Chlorbutylkautschuk/Multilayergraphen-Nanocomposites N2 - In den letzten Jahren werden zunehmend Nanopartikel als Füllstoff für Polymere vorgeschlagen und auch erfolgreich in Elastomer-Nanocomposites eingesetzt. In dieser Arbeit wird Multilayergraphen (MLG) als Nanofüllstoff näher untersucht, der sich bereits bei geringen Konzentrationen als effizient erweist. MLG besteht aus nur etwa zehn Graphenlagen. Chlorbutylkautschuk (CIIR)/MLG-Nanocomposites mit verschiedenen MLG-Gehalten wurden mit Hilfe eines ultraschallunterstützen Mischverfahrens in Lösung hergestellt und auf einem Walzwerk weiterverarbeitet. Das Einmischen von MLG führt zu einer deutlichen Verbesserung der rheologischen und mechanischen Eigenschaften, des Vernetzungsverhaltens sowie der Barrierewirkung gegenüber Gasen. Bereits der Zusatz von 3 phr MLG zu CIIR führt zu einem mehr als zweifach höheren E-Modul und zu einer Reduktion der Permeabilität von O2 und CO2 um 30 %. Höhere Konzentrationen an Nanofüllstoff resultieren in einer weiteren Verbesserung der Eigenschaften der Nanocomposites. Weiterhin zeigten die CIIR/MLG-Nanocomposites auch eine geringere Entflammbarkeit. KW - Elastomere KW - Nanokomposite KW - Graphen KW - Chlorbutylkautschuk PY - 2017 SN - 0176-1625 VL - 70 IS - 5 SP - 311 EP - 322 PB - Dr. Gupta Verlag CY - Ratingen AN - OPUS4-40327 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard A1 - Stöß, K. A1 - Ciesielski, M. A1 - Diederichs, J. A1 - Döring, M. A1 - Krämer, J. A1 - Altstädt, V. T1 - A new halogen-free flame retardant based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries N2 - The pyrolysis and fire behavior of halogen-free flame-retarded DGEBA/DMC, RTM6 and their corresponding 60 vol.-% carbon fibers (CF) composites were investigated. A novel phosphorous compound (DOPI) was used. Its action is dependent on the epoxy matrix. DGEBA/DMC and DOPI decompose independently of each other. Only flame inhibition occurs in the gas phase. RTM6 shows flame inhibition and a condensed phase interaction increasing charring. Both mechanisms decrease with increasing irradiance, whereas in RTM6-CF charring is suppressed at low ones. RTM6+DOPI shows a higher LOI (34.2%) than DGEBA/DMC+DOPI and a V-0 classification in UL 94. Adding CF only enhances the LOI, DOPI+CF leads to a superposition in LOI for DGEBA/DMC-CF+DOPI (31.8%, V-0) and a synergism for RTM6-CF+DOPI (47.7%, V-0). KW - Composites KW - Flame retardancy KW - Glass transition KW - Pyrolysis KW - Thermosets PY - 2011 DO - https://doi.org/10.1002/mame.201000242 SN - 1438-7492 SN - 1439-2054 VL - 296 IS - 1 SP - 14 EP - 30 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Krafft, Bernd A1 - Rybak, Thomas A1 - Schartel, Bernhard T1 - Multilayer Graphene/Carbon Black/Chlorine Isobutyl Isoprene Rubber Nanocomposites N2 - High loadings of carbon black (CB) are usually used to achieve the properties demanded of rubber compounds. In recent years, distinct nanoparticles have been investigated to replace CB in whole or in part, in order to reduce the necessary filler content or to improve performance. Multilayer graphene (MLG) is a nanoparticle made of just 10 graphene sheets and has recently become commercially available for mass-product nanocomposites. Three phr (part for hundred rubbers) of MLG are added to chlorine isobutyl isoprene rubber (CIIR)/CB composites in order to replace part of the CB. The incorporation of just 3 phr MLG triples the Young’s modulus of CIIR; the same effect is obtained with 20 phr CB. The simultaneous presence of three MLG and CB also delivers remarkable properties, e.g. adding three MLG and 20 phr CB increased the hardness as much as adding 40 phr CB. A comprehensive study is presented, showing the influence on a variety of mechanical properties. The potential of the MLG/CB combination is illustrated to reduce the filler content or to boost performance, respectively. Apart from the remarkable mechanical properties, the CIIR/CB/MLG nanocomposites showed an increase in weathering resistance. KW - nanocomposites KW - rubber KW - multilayer graphene KW - carbon black PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-358569 DO - https://doi.org/10.3390/polym8030095 SN - 2073-4360 VL - 8 SP - 95 PB - MDPI CY - Basel, Switzerland AN - OPUS4-35856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Multifunctional multilayer graphene/elastomer nanocomposites N2 - Elastomers are usually reinforced and employed in different applications. Various different nanoparticles, including layered silicates, carbon nanotubes, and expanded graphite, are currently being used as nanofiller. Multilayer Graphene (MLG) is proposed as promising nanofiller to improve the functional properties of Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR) and Styrene–Butadiene Rubber (SBR) at low concentrations. MLG is constituted by only approximately 10 graphene sheets. Nanocomposites with extremely low MLG content (3 phr) showed evident improvement in rheological, mechanical and curing properties. The Young's modulus of the nanocomposites increased more than twice in comparison with the unfilled rubbers. MLG also improved the weathering resistance of the different rubbers. The nanocomposites conserved their initial mechanical properties against weathering exposure. KW - Elastomer KW - Nanocomposite KW - Multilayer graphene PY - 2015 DO - https://doi.org/10.1016/j.eurpolymj.2015.07.050 SN - 0014-3057 SN - 1873-1945 VL - 71 SP - 99 EP - 113 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-33843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Metzsch-Zilligen, E. A1 - Großhauser, M. A1 - Pfaendner, R. A1 - Schartel, Bernhard T1 - Rapid mass calorimeter as a high-throughput screening method for the development of flame-retarded TPU N2 - The rapid mass calorimeter (RMC) was used as a screening tool based on accelerated fire testing to assess flame-retarded thermoplastic polyurethane (TPU). The reliability of RMC results was proven with the cone calorimeter as reference fire test. The influence of melamine cyanurate (MC) concentration on the fire performance of TPU was investigated, along with some flame-retardant combinations such as MC with aluminium diethylphosphinate (AlPi), aluminium trihydrate (ATH), and melamine polyphosphate (MPP). The two-stage burning behaviour of TPU was investigated in detail; the first stage corresponds mainly to the hard segments' decomposition and has a much lower effective heat of combustion (EHC) than the second stage, in which mainly the soft segments decompose and an intensive liquid pool fire is observed in the cone calorimeter set-up. In addition to fire testing with the cone calorimeter, RMC, and UL 94 flammability tests, the decomposition of the materials was investigated using thermogravimetric analysis coupled with infrared spectrometry (TGeFTIR). TPU/MC/AlPi shows the most promising results, achieving V-0 classification in UL 94 and reducing the extreme peak heat release rate (PHRR) of the liquid pool fire from 3154 kW/m2 to 635 kW/m2. Using MC/AlPi/MPP enhances the latter PHRR reduction further. The decomposition products identified in the gas phase via TGeFTIR reveal specific MCeAlPi eMPP interactions, as they differ from products seen in systems with MC/AlPi or MC/MPP. Correlations between RMC and cone calorimeter results were examined and presented in the final part of the paper. Several characteristics correlate strongly, pointing out that RMC is a reliable high-throughput fire testing method to screen multicomponent flame-retardant solutions in TPU. KW - Thermoplastic polyurethane KW - Flame retardancy KW - Rapid mass calorimeter KW - High throughput screening PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456982 SN - 0141-3910 SN - 1873-2321 VL - 156 SP - 43 EP - 58 PB - Elsevier Ltd. AN - OPUS4-45698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Combination of phosphorous flame retardants and aluminum trihydrate in multicomponent EPDM composites N2 - Ethylene propylene diene monomer (EPDM) Rubbers with the flame retardants tris(2-ethylhexyl)phosphate, ammonium polyphosphate, polyaniline, and aluminum trihydroxide were prepared and analyzed in this study. The homogenous dispersion of the fillers in the rubber matrix was confirmed by scanning electron microscope. To investigate the interplay of the different flame retardants, the flame retardants were varied systematically. The comprehensive study sought combinations of flame retardants that allow high loadings of flame retardants without deterioration of the physical and mechanical properties of the EPDM rubber. The eight EPDM rubbers were investigated via thermogravimetric analysis and pyrolysis gas chromatography coupled with a mass spectrometer (Py GC/MS) to investigate the potential synergistic effects. In the Py-GC/MS experiments, 27 pyrolysis products were identified. Furthermore, UL 94, limiting oxygen index, FMVSS 302, glow wire tests, and cone calorimeter tests were carried out. In the cone calorimeter test the EPDM rubbers R-1AP and R-1/2P achieved an increase in residue at flameout of 76% and a reduction in total heat evolved of about 35%. Furthermore, the compounds R-1AP and R-1/2P achieved a reduction in MARHE to about 150 kW m−1, a reduction of over 50% compared to the unprotected rubber R. KW - EPDM KW - Rubber KW - Aluminum hydroxide (ATH) KW - Phosphorous flame retardant PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502859 DO - https://doi.org/10.1002/pen.25280 SN - 1548-2634 VL - 60 IS - 2 SP - 267 EP - 280 PB - Wiley AN - OPUS4-50285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Velencoso, M. M. A1 - Pollok, D. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Aromatic vs. Aliphatic Hyperbranched Polyphosphoesters as Flame Retardants in Epoxy Resins N2 - The current trend for future flame retardants (FRs) goes to novel efficient halogen-free materials, due to the ban of several halogenated FRs. Among the most promising alternatives are phosphorus-based FRs, and of those, polymeric materials with complex shape have been recently reported. Herein, we present novel halogen-free aromatic and aliphatic hyperbranched polyphosphoesters (hbPPEs), which were synthesized by olefin Metathesis polymerization and investigated them as a FR in epoxy resins. We compare their efficiency (aliphatic vs. aromatic) and further assess the differences between the monomeric compounds and the hbPPEs. The decomposition and vaporizing behavior of a compound is an important factor in its flame-retardant behavior, but also the interaction with the pyrolyzing matrix has a significant influence on the performance. Therefore, the challenge in designing a FR is to optimize the chemical structure and its decomposition pathway to the matrix, with regards to time and temperature. This behavior becomes obvious in this study, and explains the superior gas phase activity of the aliphatic FRs. KW - Phosphorus KW - Metathesis KW - Dendritic KW - Cone calorimeter KW - Fire test PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494535 DO - https://doi.org/10.3390/molecules24213901 SN - 1420-3049 VL - 24 IS - 21 SP - 3901 PB - MDPI AN - OPUS4-49453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Sánchez-Olivares, G. A1 - Pérez-Chávez, R. A1 - Schartel, Bernhard T1 - Natural keratin and coconut fibres from industrial wastes in flame retarded thermoplastic starch biocomposites N2 - Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties. KW - Biomaterials KW - Biodegradable KW - Calorimetry KW - Composites KW - Flame retardance PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472518 DO - https://doi.org/10.3390/ma12030344 SN - 1996-1944 VL - 12 IS - 3 SP - 344, 1 EP - 24 PB - MDPI AN - OPUS4-47251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, Jens C. A1 - Battig, Alexander A1 - Zimmermann, Lisa A1 - Wagner, Martin A1 - Fischer, Jochen A1 - Schartel, Bernhard A1 - Wurm, Frederik R. T1 - Systematically controlled decomposition mechanism in phosphorus flame retardants by precise molecular architecture: P−O vs P−N N2 - Flame retardants (FR) are inevitable additives to many plastics. Halogenated organics are effective FRs but are controversially discussed due to the release of toxic gases during a fire or their persistence if landfilled. Phosphorus-containing compounds are effective alternatives to halogenated FRs and have potential lower toxicity and degradability. In addition, nitrogencontaining additives were reported to induce synergistic effects with phosphorus-based FRs. However, no systematic study of the gradual variation on a single phosphorus FR containing both P−O and P−N moieties and their comparison to the respective blends of phosphates and phosphoramides was reported. This study developed general design principles for P−O- and P−N-based FRs and will help to design effective FRs for various polymers. We synthesized a library of phosphorus FRs that only differ in their P-binding pattern from each other and studied their decomposition mechanism in epoxy resins. Systematic control over the decomposition pathways of phosphate (PO(OR)3), phosphoramidate (PO(OR)2(NHR)), phosphorodiamidate (PO(OR)(NHR)2), phosphoramide (PO(NHR)3), and their blends was identified, for example, by reducing cis-elimination and the formation of P−N-rich char with increasing nitrogen content in the P-binding sphere. Our FR epoxy resins can compete with commercial FRs in most cases, but we proved that the blending of esters and amides outperformed the single molecule amidates/diamidates due to distinctively different decomposition mechanisms acting synergistically when blended. KW - Phosphorus KW - Flame retardants KW - Epoxies KW - Mechanistic study KW - Toxicity PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481549 DO - https://doi.org/10.1021/acsapm.9b00129 SN - 2637-6105 VL - 1 IS - 5 SP - 1118 EP - 1128 PB - ACS AN - OPUS4-48154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Metzsch-Zilligen, E. A1 - Großhauser, M. A1 - Pfaendner, R. A1 - Schartel, Bernhard T1 - Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane N2 - The multicomponent flame retardant system of melamine polyphosphate (MPP), melamine cyanurate (MC) and aluminum diethylphosphinate (AlPi) is proposed and investigated for thermoplastic polyurethane (TPU). The synergy between those additives and the resulting superior fire performance are discussed. Systematically varied sets of flame retarded TPU with various MPP/MC/AlPi ratios were investigated in terms of fire behavior, pyrolysis products and mechanical properties. The total amount of the additives was always 30 wt.-%. Further, the influence of various AlPi concentrations was investigated. The optimal MPP:MC ratio was determined while keeping the amount of AlPi constant. The combination of 8 wt.-% MPP, 12 wt.-% MC and 10 wt.-% is proposed as the most promising halogen free flame retardant formulation for TPU, because it yielded a reduction in PHRR from 2660 kW/m2 (TPU) to 452 kW/m2 and enabled V-0 classification in the UL 94 test. Combinations of MPP and MC as well a high concentration of AlPi are beneficial for the mechanical properties e.g. tensile strength and elongation at break of the formulations and could be a strong competitor to commercial flame retarded TPUs. KW - Thermoplastic polyurethane KW - Synergy KW - Melamine cyanurate KW - Melamine polyphosphate KW - Aluminum diethylphosphinate KW - Rapid mass calorimeter PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472523 DO - https://doi.org/10.1016/j.polymertesting.2019.01.001 SN - 0142-9418 VL - 74 SP - 196 EP - 204 PB - Elsevier Ltd. AN - OPUS4-47252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Sanchez-Olivares, G. A1 - Rockel, Daniel A1 - Maldonado-Santoyo, M. A1 - Schartel, Bernhard T1 - Waste not, want not: The use of leather waste in flame retarded EVA N2 - Leather is among the most ancient, widely used materials worldwide. Industrial-scale leather production produces large quantities of organic waste attained during shaving and buffing steps during processing. In this study, leather wastes (LW) are used as fillers in flame retarded polymer composites. LW is investigated as a multifunctional bio-filler that enhances the fire performance of flame retarded poly(ethylene–vinyl acetate) (EVA) containing phosphorus flame retardants (P-FRs) ammonium polyphosphate (APP) or a melamine-encapsulated APP (eAPP). Using LW from tanneries as adjuvants to enhance P-FRs in EVA reduces industrial wastes that otherwise require costly waste management solutions. Materials are characterized multi-methodically via mechanical tests, electron microscopy, rheology, thermogravimetric analysis, evolved gas analysis, and condensed phase FTIR, also reaction-to-small-flames and cone calorimeter tests. EVA containing 10 wt-% LW and 20 wt-% P-FRs achieve 20% reductions in fire loads versus EVA, and up to 10% reduction in effective heats of combustion versus EVA with equal (30 wt-%) P-FR loadings. Enhanced char stabilization of EVA composites with LW and P-FRs lowered peaks of heat release rates up to 53% compared to EVA, and up to 40% compared to equal P-FRs loadings. Synergisms between LW and P-FRs in EVA are quantified. A chemical decomposition mechanism is proposed. KW - Leather waste KW - Tannery industry KW - EVA KW - Fire protection KW - Flame retardancy KW - Charring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532977 DO - https://doi.org/10.1016/j.matdes.2021.110100 SN - 0264-1275 VL - 210 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-53297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - Networking Skills: The Effect of Graphene on the Crosslinking of Natural Rubber Nanocomposites with Sulfur and Peroxide Systems N2 - Tailored crosslinking in elastomers is crucial for their technical applications. The incorporation of nanoparticles with high surface-to-volume ratios not only leads to the formation of physical networks and influences the ultimate performance of nanocomposites, but it also affects the chemical crosslinking reactions. The influence of few-layer graphene (FLG) on the crosslinking behavior of natural rubber is investigated. Four different curing systems, two sulfur-based with different accelerator-to-sulfur ratios, and two peroxide-based with different peroxide concentrations, are combined with different FLG contents. Using differential scanning calorimetry (DSC), vulcametry (MDR) and swelling measurements, the results show an accelerating effect of FLG on the kinetics of the sulfur-based curing systems, with an exothermic reaction peak in DSC shifted to lower temperatures and lower scorch and curing times in the MDR. While a higher accelerator-to-sulfur ratio in combination with FLG leads to reduced crosslinking densities, the peroxide crosslinkers are hardly affected by the presence of FLG. The good agreement of crosslink densities obtained from the swelling behavior confirms the suitability of vulcameter measurements for monitoring the complex vulcanization process of such nanocomposite systems in a simple and efficient way. The reinforcing effect of FLG shows the highest relative improvements in weakly crosslinked nanocomposites. KW - Nanocomposite KW - Elastomers KW - Graphene KW - Crosslinking KW - Network KW - Rubber KW - Vulcanization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560409 DO - https://doi.org/10.3390/polym14204363 VL - 14 IS - 20 PB - MDPI AN - OPUS4-56040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez Olivares, G. A1 - Battig, Alexander A1 - Goller, Sebastian M. A1 - Rockel, Daniel A1 - Ramirez Gonzáles, V. A1 - Schartel, Bernhard T1 - Imparting Fire Retardancy and Smoke Suppression to Leather during Tanning Processes N2 - Leather is considered a luxury good when used in seating and upholstery. To improve safety, flame retardancy in leather is usually achieved through various finishing processes such as spray or roller coating. These treatments require processing steps that cost time and are laborintensive. One avenue to achieving flame retardancy in leather is to add flame retardants during the tanning process. However, the influence on flame retardancy exerted by specific intumescent additives specifically added during leather tanning has yet to be investigated. This work explores the roles played by intumescent additive compounds in flame retarding leather when they are added during tanning instead of applied as a coating. Via a systematic investigation of various compound mixtures, the flame retardant effects in the condensed and the gas phases are elucidated. The results show a strong impact of melamine in the gas phase and of polyphosphates in the condensed phase. Their impact was quantified in fire and smoke analysis, showing a 14% reduction in the peak of heat release rate, strongly reduced burning lengths, and a 20% reduction in total smoke release compared to nontreated leather. These results illuminate the key role played by specific compounds in the flame retardancy of leather, particularly when they are added specifically during the tanning process instead of being applied as a coating. This method has great potential to reduce processing steps, lower costs, and improve material safety. KW - Leather KW - Fire protection KW - Intumescent additives KW - Smoke suppression PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564777 DO - https://doi.org/10.1021/acsomega.2c05633 SN - 2470-1343 VL - 7 IS - 48 SP - 44156 EP - 44169 PB - ACS AN - OPUS4-56477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hupp, Vitus A1 - Schartel, Bernhard A1 - Flothmeier, K. A1 - Hartwig, A. T1 - Fire Behavior of Pressure-sensitive Adhesive Tapes and Bonded Materials N2 - Pressure-sensitive adhesive tapes are used in several industrial applications such as con-struction, railway vehicles and the automotive sector,where the burning behavior is ofcrucial importance. Flame retarded adhesivetapes are developed and provided, however,often without considering the interaction of adhesive tapes and the bonded materialsduring burning nor the contribution of the tapes to fire protection goal of the bondedcomponents in distinct fire tests. This publication delivers an empirical comprehensiveknowledge how adhesive tapes and their flame retardancy effect the burning behaviorof bonded materials. With a special focus on the interaction between the single compo-nents, one flame retarded tape and one tapewithout flame retardant are examined inscenarios of emerging and developing fires, along with their bonds with the commonmaterials wood, zinc-plated steel, mineral wool, polycarbonate, and polymethylmethacry-late. The flame retardant significantly improved the flame retardancy of the tape as afree-standing object and yielded a V-2 rating in UL 94 vertical test and raised the OxygenIndex by 5 vol.%. In bonds, or rather laminates, the investigations prove that the choiceof carrier and substrates are the factors with the greatest impact on the fire propertiesand can change the peak of heat release rate and the maximum average rate of heatemission up to 25%. This research yielded a good empirical overall understanding of thefire behavior of adhesive tapes and bonded materials. Thus, it serves as a guide for tapemanufacturers and applicants to develop tapes and bonds more substrate specific. KW - Adhesives KW - Cone calorimeter KW - Flame retardancy KW - Laminates KW - Phosphorus flame retardants KW - Pressure-sensitive adhesive KW - Tapes PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593207 DO - https://doi.org/10.1002/fam.3171 SN - 0308-0501 SN - 1099-1018 VL - 48 IS - 1 SP - 114 EP - 127 PB - Wiley CY - New York, NY AN - OPUS4-59320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Bettina A1 - Wartig, K.-A. A1 - Hofmann, D. A1 - Mülhaupt, R. A1 - Schartel, Bernhard T1 - The influence of layered, spherical, and tubular carbon nanomaterials' concentration on the flame retardancy of polypropylene N2 - The characteristic influences of increasing concentrations of graphene, expanded graphite (EG), carbon black (CB), and multiwall carbon nanotubes (MWNT) are investigated on pyrolysis, reaction to small flame, burning behavior, and on electrical, thermal, and rheological properties of flame retarded polypropylene (PP-FR). The property-concentration dependency is different for the various material properties, as threshold, linear, and leveling off functions were observed. Increasing concentrations of carbon nanoparticles resulted in a decrease in the electrical resistivity of the polymer by crossing the percolation threshold. The developing nanoparticle network changes melt flow behavior for small shear rates, increases thermal conductivity and therefore, affects the UL 94 classification and oxygen index. The onset temperature of PP decomposition is shifted to temperatures up to 37°C higher; the peak heat release rate is reduced by up to 74% compared to PP-FR. Both effects leveled off with increasing particle concentration. Among the four carbon nanomaterials tested, graphene presents superior influence on composite properties over the tested concentration range and outperforms commercial CB, MWNT, and EG. POLYM. COMPOS., 36:1230–1241, 2015. KW - Graphene KW - Flame retardancy KW - Concentration dependency KW - Nanocomposite KW - Carbon nanomaterial PY - 2015 DO - https://doi.org/10.1002/pc.23027 SN - 0272-8397 SN - 1548-0569 VL - 36 IS - 7 SP - 1230 EP - 1241 PB - Society of Plastics Engineers CY - Manchester, NH AN - OPUS4-33619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goller, Sebastian M. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - No business as usual: The effect of smoke suppressants commonly used in the flame retardant PA6.6 on smoke and fire properties N2 - As most of polymeric materials are inherently flammable, flame retardants (FR) are commonly used to reduce their fire risks. Nevertheless, these flame retardant materials are often detrimental to smoke parameters like specific optical density or smoke toxicity. The influence of several smoke suppressants (SP)-zinc stannate, zinc phosphate, titanium oxide and hydrotalcite-were investigated with respect to flame retardancy, smoke emission, particle emission and smoke toxicity in a diethyl aluminum phosphinate (AlPi) flame retardant polyamide 6.6 (PA6.6). It was shown that the interaction between SP, FR and polymer is crucial for smoke and fire properties and can change the mode of action of the FR as well the decomposition mechanism of the polymer. Small amounts of SP show less effect on forced flaming behavior and the optical density, but they can influence flammability and the particle size distribution of the soot particles. The flame retardancy was significantly enhanced by 5 wt.-% zinc stannate in PA6.6 under forced flaming conditions. The charring mechanism was improved, and the mode of action of AlPi switched from the gas to the condensed phase. This resulted of in a reduced PHRR and TSP and an increase in residue yield. The smoke toxicity and optical density were reduced in the smoke density chamber as well. The smoke particles shifted to smaller sizes as the time in the pyrolytic zone increased. The formation of a dense char is assumed to be the key factor to enhance smoke suppression and flame retardancy properties. KW - Polyamide 6.6 KW - Smoke suppression KW - Flame retardancy KW - Zinc stannate KW - Smoke density PY - 2023 DO - https://doi.org/10.1016/j.polymdegradstab.2023.110276 SN - 0141-3910 VL - 209 PB - Elsevier Ltd. AN - OPUS4-56981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Linteris, G.T. A1 - Stoliarov, S.I. A1 - Lyon, R.E. A1 - Walters, R.N. A1 - Hofmann-Böllinghaus, Anja T1 - Prediction of the mass loss rate of polymer materials: Impact of residue formation N2 - Two different numerical simulation tools, Fire Dynamic Simulator (FDS) and ThermaKin, are investigated with respect to their capability to predict the mass loss rate of polymer materials exposed to different fires. For validation, gasification apparatus and cone calorimeter tests are conducted. The main focus is on the influence of residue formation. Therefore, poly (butylene terephthalate) (PBT) and PBT reinforced with glass fibres (PBT-GF) are investigated and compared. PBT decomposes almost completely, while PBT-GF forms residue. The materials are characterised in order to provide suitable input parameters. Additionally the total incident heat flux to the sample is measured. With accurate input parameters, FDS and ThermaKin predicted the pyrolysis behaviour of PBT very well. Only some limitations are identified regarding the residue-forming PBT-GF. Both numerical simulation tools demonstrate a high value regarding the assessment of parameters' relative impacts and thus the evaluation of optimisation routes in polymer and composite development. KW - Polymer KW - Pyrolysis simulation KW - Residue formation KW - Fire dynamics simulator (FDS) KW - ThermKin PY - 2012 DO - https://doi.org/10.1016/j.combustflame.2012.03.012 SN - 0010-2180 SN - 1556-2921 VL - 159 IS - 9 SP - 2974 EP - 2984 PB - Elsevier CY - New York, NY AN - OPUS4-26382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André A1 - Sturm, Heinz A1 - Kleemeier, M. A1 - Hartwig, A. A1 - Vogt, C. A1 - Fischer, R.X. T1 - Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer N2 - The layered silicate (LS) modification and processing parameters applied control the morphology of the LS/polymer composites. Here, increasing the surface area of the LS particles by using alternative drying processes increases dispersion towards a more typical nanocomposite morphology, which is a basic requirement for promising flame retardancy. Nevertheless, the morphology at room temperature does not act itself with respect to flame retardancy, but serves as a prerequisite for the formation of an efficient surface protection layer during pyrolysis. The formation of this residue layer was addressed experimentally for the actual pyrolysis region of a burning nanocomposite and thus our results are valid without any assumptions or compromises on the time period, dimension, surrounding atmosphere or temperature. The formation of the inorganic-carbonaceous residue is influenced by bubbling, migration, reorientation, agglomeration, ablation, and perhaps also delamination induced thermally and by decomposition, whereas true sintering of the inorganic particles was ruled out as an important mechanism. Multiple, quite different mechanisms are relevant during the formation of the residue, and the importance of each mechanism probably differs from one nanocomposite system to another. The main fire protection effect of the surface layer in polymer nanocomposites based on non-charring or nearly non-charring polymers is the increase in surface temperature, resulting in a substantial increase in reradiated heat flux (heat shielding). KW - Nanocomposite KW - Fire retardancy KW - Epoxy resin KW - Fire behavior KW - Flammability PY - 2011 DO - https://doi.org/10.1002/pat.1644 SN - 1042-7147 SN - 1099-1581 VL - 22 IS - 12 SP - 1581 EP - 1592 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-24916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Bahr, Horst A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation N2 - The pyrolysis and fire behavior of glass-fiber reinforced poly(butylene terephthalate) (PBT/GF) with two different metal phosphinates as flame retardants in combination with and without melamine cyanurate (MC) were analyzed by means of thermogravimetry, thermogravimetry coupled with infrared spectroscopy, flammability, and cone calorimeter tests as well as scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence spectroscopy. In PBT/GF, dosages of 13-20% of the halogen-free flame retardant aluminum phosphinate or aluminum phosphinate in combination with MC fulfill the requirements for electrical engineering and electronics applications (UL 94 = V-0; LOI > 42%), whereas the use of the same amount of zinc phosphinate or zinc phosphinate in combination with MC does not improve the fire behavior satisfactorily (UL 94 = HB; LOI = 27-28%). The performance under forced flaming conditions (cone calorimeter) is quite similar for both of the metal phosphinates. The use of aluminum and zinc salts results in similar flame inhibition predominantly due to the release of the phosphinate compounds in the gas phase. Both metal phosphinates and MC interact with the polymer changing the decomposition characteristics. However, part of the zinc phosphinate vaporizes as a complete molecule. Because of the different decomposition behavior of the metal salts, only the aluminum phosphinate results in a small amount of thermally stable carbonaceous char. In particular, the aluminum phosphinate-terephthalate formed is more stable than the zinc phosphinate-terephthalate. The small amount of char has a crucial effect on the thermal properties and mechanical stability of the residue and thus the flammability. KW - Flame retardance KW - Polyester KW - Phosphinates KW - Pyrolysis KW - Cone calorimeter PY - 2008 DO - https://doi.org/10.1002/pat.1147 SN - 1042-7147 SN - 1099-1581 VL - 19 IS - 6 SP - 680 EP - 692 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-17620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Heinz A1 - Schartel, Bernhard A1 - Weiß, André A1 - Braun, Ulrike T1 - SEM/EDX: Advanced investigation of structured fire residues and residue formation N2 - Heterogeneous, gradual or structured morphology of fire residues plays an important role in fire retardancy of polymers. A scanning electron microscope with an attached energy dispersive X-ray spectrometer (SEM/EDX) is highlighted as a powerful tool for the advanced characterization of such complex fire residues, since it offers high resolution in combination with both good depth of field and analysis of chemical composition. Two examples are presented: First, comprehensive SEM/EDX investigation on a complex structured fire residue of glass fibre reinforced polyamide 6,6 (PA 66-GF) flame retarded by diethylaluminium phosphinate, melamine polyphosphate and some zinc borate. A multilayered surface crust (thickness ~ 24 µm) covers a rather hollow area stabilized by GF glued together. The resulting efficient thermal insulation results in self-extinguishing before pyrolysis is completed, even under forced-flaming combustion. Second, sophisticated, quasi online SEM/EDX imaging of the formation of residual protection layer in layered silicate epoxy resin nanocomposites (LSEC). Burning specimens were quenched in liquid nitrogen for subsequent analyses. Different zones were distinguished in the condensed phase characterized by distinct processes such as melting and ablation of organic material, as well as agglomeration, depletion, exfoliation and reorientation of the LS. KW - Fire residue KW - SEM/EDX KW - Fire retardancy KW - PA 66 KW - Layered silicate KW - Diethylaluminium phosphinate PY - 2012 DO - https://doi.org/10.1016/j.polymertesting.2012.03.005 SN - 0142-9418 VL - 31 IS - 5 SP - 606 EP - 619 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-25802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Gluth, Gregor A1 - Watolla, Marie-Bernadette A1 - Morys, Michael A1 - Häßler, Dustin A1 - Schartel, Bernhard T1 - Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen N2 - Wesentlich für das Sicherheitsniveau und damit die nachhaltige Wettbewerbsfähigkeit des Technologiestandortes Deutschland ist der Brandschutz in Industrieanlagen, in Gebäuden und im Transportwesen. Der vorbeugende bauliche Brandschutz hat u. a. das Ziel, die Brand- und Rauchausbreitung im Brandfall für eine gewisse Zeit zu behindern, damit die erforderlichen Lösch- und Rettungsarbeiten durchgeführt werden können. Dies geschieht u.a. durch Anforderungen an die Feuerwiderstandsfähigkeit brandbeanspruchter Bauteile. Der Feuerwiderstand eines Bauteils ist die Fähigkeit während eines angegebenen Zeitraums in einer genormten Feuerwiderstandsprüfung bezüglich mechanischer Stabilität und/oder thermischer Isolierung nicht zu versagen. Reaktive Brandschutzbeschichtungen erhöhen für viele Bauteile sehr effektiv den Feuerwiderstand. Die Beschichtungen und die Brandprüfungen müssen jedoch an die immer komplexeren Anwendungen und/oder extremeren Anforderungen angepasst und weiterentwickelt werden. Aktuelle Forschungsschwerpunkte liegen dabei in der Entwicklung neuer Materialien (z.B. Geopolymere, keramisierende Beschichtungen, silikonbasierte Beschichtungen) für extreme Brandszenarien (extreme Temperaturen, lange Beanspruchungszeiten) und in der Realisierung komplexer Funktionalitäten (komplexe Geometrien, bewegliche Komponenten) sowie in der Entwicklung neuer Testmethoden (Feuerwiderstand als bench-scale Tests, kostengünstiges Screening, Feuerwiderstand in extremen Brandszenarien). Die Entwicklung geht dabei weg von der präskriptiven Bewertung hin zur leistungsorientierten (performance-based) Bewertung in individuellen Brandszenarien oder von komplexen Bauteilen. Im Rahmen dieser Arbeit werden Lösungsansätze für die neuen Herausforderungen an die reaktiven Brandschutzsysteme unter Extrembedingungen und deren Testmöglichkeiten vorgestellt und diskutiert. Im Mittelpunkt stehen dabei neu entwickelte bench-scale Testmethoden zum Screening von neuen Beschichtungsmaterialien sowie zur Beurteilung spezieller bzw. materialspezifischer Aspekte des Feuerwiderstands unter Extrembedingungen. KW - Reaktive Brandschutzsysteme KW - Brandtest PY - 2016 DO - https://doi.org/10.1002/bate.201600032 SN - 0932-8351 SN - 1437-0999 VL - 93 IS - 8 SP - 531 EP - 542 PB - Ernst & Sohn Verlag CY - Berlin AN - OPUS4-37115 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deng, C. A1 - Yin, Huajie A1 - Li, R.-M. A1 - Huang, S.-C. A1 - Schartel, Bernhard A1 - Wang, Y.-Z. T1 - Modes of action of a mono-component intumescent flame retardant MAPP in polyethylene-octene elastomer N2 - A mono-component intumescent flame retardant named ethylenediamine-modified ammonium polyphosphate (MAPP) is used in polyethylene-octene elastomer (POE). Insight into the flame-retardant mechanisms of the MAPP is provided from a new perspective. The fire performance of POE/MAPP composites is investigated by oxygen index (OI) and vertical burning (UL-94) tests. POE Composite containing 35 wt% MAPP achieves a V-0 rating, and its OI is 29.3 vol%. The thermogravimetric Analysis (TGA) and Fourier transform infrared spectra (FTIR) confirm that the incorporation of ethylenediamine changes the thermal decomposition of APP, mainly resulting in the formation of char layer with a thermally stable structure. Cone calorimeter analysis revealed the flame-retardant modes of action of MAPP in POE under forced-flaming conditions. Quantitative analysis illustrates that both the residue due to charring and the fuel dilution/flame Inhibition resulting from the release of incombustible products/ phosphorus species decrease the total heat release (fire load) by 20e28%. The residue increases linearly with increasing MAPP content, whereas the reduction in effective heat of combustion levels off. Moreover, the flame-retardant effect resulting from the protective properties of the char is discovered to be the dominant mode of action (up to 85% reduction) with respect to the peak heat release rate, leading to the excellent flame retardancy of POE/MAPP. KW - Ammonium polyphosphate KW - Flame retardant KW - Carbonization KW - Elastomer PY - 2017 DO - https://doi.org/10.1016/j.polymdegradstab.2017.03.006 SN - 0141-3910 SN - 1873-2321 VL - 138 SP - 142 EP - 150 PB - Elsevier AN - OPUS4-39901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Wilkie, Charles A. A1 - Camino, G. T1 - Recommendations on the scientific approach to polymer flame retardancy: Part 2 - concepts N2 - The usage of concepts in scientific communication is critical to our ability to inform the reader about work that has been performed. The significance and thus the quality of scientific discussion rely on the precise use of concepts. In this second part of a two-part paper, concerning the scientific basis of polymer fire retardancy, the proper use of concepts is addressed. Distinct concepts in flame retardancy are discussed, such as fire residue, the correlation of fire performance with char yield according to van Krevelen, catalysis, and wicking. Synergy is discussed in detail, as well as approaches to quantify it, due to its importance for flame retardant polymers. The preceding first paper (part 1) discussed the proper use of scientific terms, thermal analysis, and fire testing. Thus, together these two papers support the community by offering recommendations and addressing some of the most relevant points. They encourage to review scientific practice in the field of flame retardancy of polymers. KW - Char KW - Synergism KW - Flame retardancy KW - Flammability KW - Fire growth indices KW - Synergy index PY - 2017 DO - https://doi.org/10.1177/0734904116675370 SN - 0734-9041 SN - 1530-8049 VL - 35 IS - 1 SP - 3 EP - 20 PB - Sage AN - OPUS4-39084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Bünker, J. T1 - Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants N2 - Fire resistance has become a key property for structural lightweight sandwich components in aviation, shipping, railway vehicles, and construction. The development of future composite materials and components demands adequate test procedures for simultaneous application of compression and fully developed fire. Therefore an intermediate-scale approach (specimen size = 500 mm x 500 mm) is applied with compressive loads (up to 1 MN) and direct application of a burner to one side of the specimens, as established in aviation for severe burn-through tests. The influence of different core structures (polyvinylchloride foam, polyisocyanorate foam reinforced by stitched glass bridges, and balsa wood) was investigated for glass-fibre-reinforced sandwich specimens with and without flame retardants applied on the fabrics, in the matrix, and on surface for each specimen at the same time. Times to failure were increased up to a factor of 4. The intumescent coating prolongs the time to failure significantly. What is more, using the intrinsic potential of the front skin together with the core to protect a load bearing back skin in sandwich panels, the design of the core – here using the wood core – is the most promising approach. KW - Fire resistance KW - Fire stability KW - Glass-fibre-reinforced plastics KW - Composite KW - Core materials PY - 2017 DO - https://doi.org/10.1016/j.compstruct.2016.11.027 SN - 0263-8223 SN - 1879-1085 VL - 160 SP - 1310 EP - 1318 PB - Elsevier AN - OPUS4-38622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Schartel, Bernhard T1 - The rapid mass calorimeter: Understanding reduced-scale fire test results N2 - The effects of reducing specimen size on the fire behavior of polymeric materials were investigated by means of the rapid mass calorimeter, a high-throughput Screening instrument. Results from the rapid mass calorimeter were compared with those from the cone calorimeter. Correlation coefficients between the different measures of each method and between the two methods are discussed to elucidate the differences and similarities in the two methods. Materials with characteristic heat release rate (HRR) curves in the cone calorimeter were evaluated in detail. The rapid mass calorimeter produces valuable and interpretable results with HRR curve characteristics similar to cone calorimeter results. Compared to cone calorimeter measurements, material savings of 96% are achieved, while maintaining the Advantages of a macroscopic fire test. KW - Rapid mass calorimeter KW - High throughput KW - Cone calorimeter KW - Flame retardancy PY - 2017 DO - https://doi.org/10.1016/j.polymertesting.2016.11.027 SN - 0142-9418 VL - 57 SP - 165 EP - 174 PB - Elsevier AN - OPUS4-38739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Schmaucks, Gerd T1 - Flame retardancy synergism in polymers through different inert fillers’ geometry N2 - Low amounts (<7.5 wt%) of organically modified layered silicate (LS) as well as large amounts (>10 wt%) of spherical amorphous SiO2 (sSiO2) has been used successfully as adjuvants in commercial polymeric materials flame retarded with metal hydroxide. The combination of LS and SiO2 is investigated in different thermoplastics with respect to their fire behavior, particular to overcome the restrictions in maximum and minimum filler contents know for the single additives. The aim was to check the potential of combinations of the inert fillers in absence of a real fire retardant. The combination of LS and sSiO2 harbors the potential for flame retardancy effects close to superposition or even synergy, due to an improved structure of the fire residue. LS-sSiO2 combinations are proposed to work as adjuvants superior to LS and sSiO2 in flame retarded polymeric materials. KW - Flame retardance KW - Nanocomposites KW - Organoclay KW - Silicones KW - Fillers PY - 2017 DO - https://doi.org/10.1002/pen.24485 SN - 0032-3888 SN - 1548-2634 VL - 57 IS - 10 SP - 1099 EP - 1109 PB - SPE AN - OPUS4-42573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Schartel, Bernhard A1 - Schoch, Rebecca A1 - Schubert, Martina T1 - Holz-Kunststoff-Verbundwerkstoffe - Wie beeinflussen Flammschutzmittel die Rauchgaszusammensetzung im Brandfall? N2 - Der steigende Einsatz von Holz-Kunststoff-Verbundwerkstoffen (Wood Plastic Composite, WPC) erfordert das Wissen um seine spezifischen Eigenschaften, insbesondere dem Brand risiko. Dabei können Flammschutzmittel die Entflammbarkeit, Wärmeabgabe und die Brandausbreitung des Materials verringern. Deshalb sind der gezielte und effiziente Einsatz und die Kenntnis über die Wirkungsweise der Flammschutzmittel im WPC für den Brandschutz von enormer Bedeutung. Dazu gehört auch die Rauchentwicklung im Brandfall. Rauch beeinflusst aufgrund seiner Toxizität und seiner Sichttrübung die Fluchtmöglichkeit der betroffenen Personen. In der Rauchkammer nach ISO 5659-2 wird die Rauchentwicklung von flachen Werkstoffproben ermittelt. Die Rauchgastoxizität bzw. die Rauchgaszusammensetzung wird mithilfe der FTIR (Fourier Transformierte Infrarot)-Spektroskopie ermittelt. Frei werdende Partikel schädigen die Atemorgane und beeinflussen damit auch die Fluchtfähigkeit von Personen im Brandfall. Aussagen zur Partikelemission können mithilfe eines an die Rauchkammer gekoppelten Partikelanalysators getroffen werden. Im Rahmen dieser Arbeit wurden verschiedene flammgeschützte WPC-Systeme hinsichtlich ihres Rauchverhaltens in der Rauchkammer untersucht. Die Ergebnisse zu emittierten toxischen Gasen, Partikeln und zur Rauchentwicklung werden vorgestellt und in Abhängigkeit von den eingesetzten Flammschutzmitteln im WPC diskutiert. KW - Rauchgase KW - Holz-Kunststoff-Verbundwerkstoffe KW - Partikel KW - Flammschutz PY - 2019 DO - https://doi.org/10.1002/bate.201900020 VL - 96 SP - 1 EP - 12 PB - Wiley AN - OPUS4-48157 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Günther, Martin T1 - Flammschutz von Polyurethanen N2 - Polyurethane (PU) bilden eine der vielseitigsten Klassen der Polymerwerkstoffe. Kein anderer Kunststoff wird sowohl als Thermoplast, als Elastomer wie auch als Duroplast verarbeitet und eingesetzt. Entsprechend vielfältig sind auch die Anforderungen an den Flammschutz. Je nach Material und Anwendung müssen spezifische Brandnormen erfüllt werden. Der vorliegende Aufsatz gibt einen Überblick über die verfügbaren Ansätze, um durch geeignete Auswahl der Rohstoffe und der Flammschutzmittel diese verschiedensten Anforderungen an das Brandverhalten zu erfüllen. KW - Polyurethan KW - Flammschutz KW - Pyrolyse KW - Schaum KW - Cone calorimeter PY - 2020 VL - 20 IS - 1 SP - 48 EP - 53 PB - Dr. Gupta AN - OPUS4-50736 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Günther, Martin T1 - Flame retardancy of polyurethanes N2 - Polyurethanes (PU) represent one of the most versatile classes of plastics. They are processed and used as thermoplastic, elastomer, and thermoset. The requirements regarding flammability are correspondingly versatile. Depending on the material and the field of application, specific fire tests have to be fulfilled. This paper describes the different concepts used to fulfil these requirements by choosing the right raw materials and flame retardants. KW - Polyurethane KW - Flame retardant KW - Foam KW - Flammability KW - Pyrolysis KW - Cone calorimeter PY - 2020 VL - 17 IS - 1 SP - 44 EP - 48 PB - Dr. Gupta AN - OPUS4-50737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Ma, C. A1 - Zhou, F. A1 - Hu, Y. A1 - Schartel, Bernhard T1 - Flame retardant flexible polyurethane foams based on phosphorous soybean-oil polyol and expandable graphite N2 - A phosphorous soybean-oil–based polyol was derived via epoxidation and ring opening reaction as an alternative to petrochemical-based polyol for the synthesis of flexible polyurethane foams (FPUFs). 5-wt.% and 10-wt.% of expandable graphite (EG) were added to further improve flame retardancy. The mechanical properties (tensile strength and compression stress) of the foams were investigated. Thermogravimetric analysis (TGA) coupled with Fourier-transform infrared (FTIR) were conducted to evaluate the pyrolysis; limiting oxygen index (LOI), UL 94 and cone calorimeter were performed to analyze the fire performance of the foams; smoke density chamber was used to investigate the smoke released during burning. When 10-wt.% of EG was used, the flame retardancy of the foams was much enhanced due to the synergistic effect between phosphorus and EG. The char yield was three times higher (54wt.%). The fire load MARHE approached 100 kWm−2, half of the value expected for a superposition. The combination of phosphorous polyols and EG is proposed as strategy for future flame retarded FPUFs. KW - Phosphorous soybean-oil–based polyol KW - Flexible polyurethane foam KW - Expandable graphite KW - Flame retardancy KW - Smoke measurement PY - 2021 DO - https://doi.org/10.1016/j.polymdegradstab.2021.109656 SN - 0141-3910 VL - 191 SP - 9656 PB - Elsevier Ltd. AN - OPUS4-52907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Garfias González, Karla I. A1 - Schartel, Bernhard T1 - Valorizing “non-vegan” bio-fillers: Synergists for phosphorus flame retardants in epoxy resins N2 - Sustainable, biogenic flame retardant adjuvants for epoxy resins are receiving increased focus. Zoological products like insects, bone meal, and eggshells are available in large quantities, but remain uninvestigated as functional fillers to epoxy resins, although they are potential synergists to flame retardants. The efficacy and flame retardancy of “non-vegan” additives in combination with flame retardants is investigated and the fire behavior and thermal decomposition of bio-sourced epoxy resin composites is characterized. By comparing the fire performance of composites containing flame retardants or fillers at varying loadings (5, 10, and 20%), their role as synergists that enhance the function of organophosphorus flame retardants in bio-epoxy composites is identified and quantified. Peak heat release rates were 44% lower in composites containing both filler and flame retardant versus those containing only flame retardants, and fire loads were reduced by 44% versus the pure resin, highlighting the ability of “non-vegan” fillers to function as synergists. KW - Flame retardancy KW - Synergy KW - Bio-composite KW - Epoxy resin KW - Biogenic KW - Renewable PY - 2022 DO - https://doi.org/10.1016/j.polymdegradstab.2022.109875 SN - 0141-3910 VL - 198 SP - 109875 PB - Elsevier Ltd. AN - OPUS4-54438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Battig, Alexander A1 - Schulze, Dietmar A1 - Agudo Jacome, Leonardo A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - Shape, orientation, interaction, or dispersion: valorization of the influence factors in natural rubber nanocomposites N2 - The addition of nanoparticles as reinforcing fillers in elastomers yields nanocomposites with unique property profiles, which opens the door for various new application fields. Major factors influencing the performance of nanocomposites are studied by varying the type and shape of nanoparticles and their dispersion in the natural rubber matrix. The industrial applicability of these nanocomposites is put into focus using two types of graphene and a nanoscale carbon black, all commercially available, and scalable processing techniques in the form of a highly filled masterbatch production via latex premixing by simple stirring or ultrasonically assisted dispersing with surfactant followed by conventional two-roll milling and hot pressing. Different processing and measurement methods reveal the potential for possible improvements: rheology, curing behavior, static and dynamic mechanical properties, swelling, and fire behavior. The aspect ratio of the nanoparticles and their interaction with the surrounding matrix prove to be crucial for the development of superior nanocomposites. An enhanced dispersing method enables the utilization of the improvement potential at low filler loadings (3 parts per hundred of rubber [phr]) and yields multifunctional rubber nanocomposites: two-dimensional layered particles (graphene) result in anisotropic material behavior with strong reinforcement in the in-plane direction (157% increase in the Young's modulus). The peak heat release rate in the cone calorimeter is reduced by 55% by incorporating 3 phr of few-layer graphene via an optimized dispersing process. KW - Graphene KW - Natural rubber KW - Nanocomposites KW - Anisotropy KW - Fire behavior PY - 2023 DO - https://doi.org/10.5254/rct.23.77961 SN - 0035-9475 SN - 1943-4804 VL - 96 IS - 1 SP - 40 EP - 58 PB - Allen Press CY - Lawrence (KA), USA AN - OPUS4-57568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez Olivares, G. A1 - Rockel, Daniel A1 - Calderas, F. A1 - Schartel, Bernhard T1 - Utilizing leather fibers from industrial wastes as bio-filler to improve flame retardancy in polypropylene N2 - Combining buffing leather fibers from industrial waste streams with ammonium polyphosphate and bentonite clay is proposed as a flame-retardant additive for polypropylene. The paper addresses how they can be processed into attractive composites with the desired mechanical properties. Buffing leather fibers function as a multifunctional bio-filler and as a synergist for the flame retardant, resulting in fire retardancy successful enough to increase the oxygen index (LOI) by up to 7 vol.-% and to achieve a V0 UL 94 classification. Impressively reduced heat release rates are obtained in the cone calorimeter at 50 kW/m2 irradiation; for instance, the maximum average rate heat evolved (MARHE) drops from 765 to below 200 kW m􀀀 2. The synergistic effects are quantified and shown to be very strong for LOI and MARHE. This work opens the door to use waste buffing leather fibers as a promising multifunctional and synergistic bio-filler. KW - Polypropylene KW - Flame retardancy KW - Industrial waste KW - Leather fibers KW - Bio-filler PY - 2024 DO - https://doi.org/10.1016/j.jiec.2023.11.008 SN - 1226-086X SN - 1876-794X VL - 132 SP - 148 EP - 160 PB - Elsevier B.V. AN - OPUS4-59556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pappalardo, Salvatore A1 - Russo, Pietro A1 - Acierno, Domenico A1 - Rabe, Sebastian A1 - Schartel, Bernhard T1 - The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene N2 - The pyrolysis, flammability and fire behavior of polypropylene (PP) containing an intumescent flame retardant and sepiolite nanoparticles were investigated by performing thermogravimetry, oxygen index (LOI), UL-94, and cone calorimeter tests. The combination of 0.5 wt% of premodified sepiolite (OSEP) with 12 wt% of a commercial intumescent flame retardant showed a clear synergy in LOI, UL-94 ranking and peak heat release rate. The ternary formulation achieved a V-0 classification and, consequently, allowed a reduction in the amount of flame retardant necessary to achieve this result. Whereas OSEP and pristine sepiolite nanoparticles (SEP) affect the performance in PP nanocomposites quite similarly, OSEP outperformed SEP in the combination with intumescent flame retardant. The cone calorimeter results and dynamic rheological measurements confirmed the synergistic effect between the nanofiller and the flame retardant resulting from the improved properties of the residual protective layer. KW - Polypropylene KW - Intumescent flame retardant KW - Sepiolite KW - Cone calorimetry KW - Low oxygen index PY - 2016 DO - https://doi.org/10.1016/j.eurpolymj.2016.01.041 SN - 0014-3057 VL - 76 SP - 196 EP - 207 PB - Elsevier AN - OPUS4-35854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Schartel, Bernhard T1 - Interactions in multicomponent flame-retardant polymers: Solid-state NMR identifying the chemistry behind it N2 - Distinct approaches are used to reduce the fire risks of polymers, a key issue for many industrial applications. Among the variety of approaches, the use of synergy in halogen-free multicomponent systems is one of the most auspicious. To optimize the composition of such flame-retardant systems it is essential to understand the mechanisms and the corresponding chemistry in the condensed phase. In this work different methods are used, including cone calorimeter, thermogravimetry (TG), and TG-FTIR, with the main focus on the solid-state NMR analysis of the solid residues. The structural changes in the condensed phase of two thermoplastic elastomer systems based on copolymer styrene-ethylene-butadiene-styrene (TPE-S) were investigated: TPE-S/aluminium diethylphosphinate (AlPi)/magnesium hydroxide (MH) and TPE-S/AlPi/zinc borate (ZB)/poly(phenylene oxide) (PPO). Strong flame inhibition is synergistically combined with protective layer formation. 13C-, 27Al-, 11B- and 31P MAS NMR (magic angle spinning nuclear magnetic resonance) experiments using direct excitation with a single pulse and 1H–31P cross-polarization (CP) were carried out as well as double resonance techniques. Magnesium phosphates were formed during the pyrolysis of TPE-S/AlPi/MH, while for the system TPE-S/AlPi/ZB/PPO zinc phosphates and borophosphates were observed. Thus, the chemistry behind the chemical interaction was characterized unambiguously for the investigated systems. KW - Synergy KW - Solid-state NMR KW - Flame retardancy KW - SEBS KW - Aluminium diethylphosphinate KW - Magnesium hydroxide KW - Zinc borate KW - Poly(phenylene) oxide PY - 2015 DO - https://doi.org/10.1016/j.polymdegradstab.2015.08.018 SN - 0141-3910 SN - 1873-2321 VL - 121 SP - 116 EP - 125 PB - Applied Science Publ. CY - London AN - OPUS4-34306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Wilkie, Charles A. A1 - Camino, Giovanni T1 - Recommendations on the scientific approach to polymer flame retardancy: Part 1—Scientific terms and methods N2 - The correct use of scientific terms, performing experiments accurately, and discussing data using unequivocal scientific concepts constitute the basis for good scientific practice. The significance and thus the quality of scientific communication rely on the proper use of terms and methods. It is the aim of this two-part article to support the community with recommendations for discussing the flame retardancy of polymers by addressing some of the most relevant points. The first article (part one of two) clarifies some scientific terms and, in some cases, such as for ‘‘pyrolysis,’’ ‘‘thermal decomposition,’’ and ‘‘fire resistance,’’ critically discusses their definitions in the field of fire science. Several comments are made on proper fire testing and thermal analysis, including some thoughts on uncertainty in fire testing. The proper use of distinct concepts in flame retardancy is discussed briefly in the subsequent second article (part two). This article tries to Balance imparting background on the subject with recommendations. It encourages to check scientific practice with respect to communication and applying methods. KW - Pyrolysis KW - Fire testing KW - Char KW - Flame retardant KW - Flammability KW - Fire property PY - 2016 DO - https://doi.org/10.1177/0734904116675881 SN - 0734-9041 SN - 1530-8049 VL - 34 IS - 6 SP - 447 EP - 467 PB - SAGE AN - OPUS4-38115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Schartel, Bernhard T1 - Aluminium diethylphosphinate versus ammonium polyphosphate: A comprehensive comparison of the chemical interactions during pyrolysis in flame-retarded polyolefine/poly(phenylene oxide) N2 - A systematic comparison of chemical interactions and fire behaviour is presented for the thermoplas-tic elastomer (block copolymer styrene-ethylene-butadiene-styrene) (TPE-S)/diethyl- and methylvinylsiloxane (Si)/poly(phenylene oxide) (PPO), flame-retarded with aluminium diethylphosphinate (AlPi)and with ammonium polyphosphate (APP), respectively. TPE-S/APP/Si/PPO performed better in the conecalorimeter test (reduction in peak heat release rate from 2042 to 475 kW m−2), but TPE-S/AlPi/Si/PPO inthe flammability tests (oxygen index (OI) and UL 94). This difference was caused by the different modes ofaction of APP (more in the condensed phase) and AlPi (mainly in the gas phase). Thermogravimetry cou-pled with Fourier transform infrared spectroscopy (TG-FTIR) was used to analyse the mass loss and theevolved gas products, while a Linkam hot-stage cell to investigate the decomposition in the condensedphase. Moreover, a detailed analysis of the fire residues was done using solid-state NMR.13C MAS NMRshowed that both flame-retarded compositions form graphite-like amorphous carbonaceous char, orig-inating from PPO.31P MAS NMR and29Si MAS NMR delivered important information about interactionbetween phosphorus and the siloxane. For TPE-S/AlPi/Si/PPO aluminium phosphate and silicon dioxideoccurred, while also silicophosphate was produced in TPE-S/APP/Si/PPO. The direct comparison of two ofthe most prominent halogen-free flame retardants containing phosphorus delivered meaningful insightsinto the modes of action and molecular mechanisms controlling flame retardancy. KW - Aluminium diethylphosphinate KW - Ammonium polyphosphate KW - Flame retardancy KW - Solid-state NMR KW - SEBS PY - 2016 SN - 0040-6031 SN - 1872-762X VL - 640 SP - 74 EP - 84 PB - Elsevier AN - OPUS4-37802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Böhning, Martin A1 - Krafft, Bernd A1 - Schartel, Bernhard T1 - Multilayer graphene chlorine isobutyl isoprene rubber nanocomposites: influence of the multilayer graphene concentration on physical and flame-retardant properties N2 - In recent years, different nanoparticles have been proposed and successfully introduced as nanofillers in rubber nanocomposites. In this study, multilayer graphene (MLG) is proposed as a nanoparticle that functions efficiently at low concentrations. MLG consists of just 10 or so graphene sheets. Chlorine isobutyl isoprene rubber (CIIR)/MLG nanocomposites with different MLG loadings were prepared using an ultrasonically assisted solution mixing procedure followed by two-roll milling. The incorporation of MLG provides a clear improvement in the rheological, mechanical, curing, and gas barrier properties of the nanocomposites. Adding only 3 phr ofMLGto CIIR increased the Young’s modulus by more than two times and reduced the permeability ofO2 andCO2 by 30%. Higher nanofiller concentrations yielded further improvement in the properties of the nanocomposites. Moreover, CIIR/MLG nanocomposites showed reduced flammability. KW - Graphene KW - Rubber KW - Nanocomposites KW - Flammability KW - Reinforcement PY - 2016 DO - https://doi.org/10.5254/rct.15.84838 SN - 0035-9475 VL - 89 IS - 2 SP - 316 EP - 334 AN - OPUS4-37595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Tabaka, Weronika A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Graphene / hydrogenated acrylonitrile-butadiene rubber nanocomposites: Dispersion, curing, mechanical reinforcement, multifunctional filler N2 - Elastomers are usually mechanically reinforced with high loadings of carbon black (CB) to achieve the properties demanded; high amounts of mineral flame retardants are used to fulfill fire safety requirements. In this study, multilayer graphene (MLG), a nanoparticle made of only 10 graphene sheets, is applied in low loadings, 3 parts per hundred rubber (phr) to reduce the total amount of filler or boost performance in hydrogenated acrylonitrilebutadiene rubber (HNBR). In the HNBR/MLG nanocomposites, 3 phr MLG replaced 15 phr CB, 3 phr aluminum trihydroxide (ATH), or 15 phr CB + 3 phr ATH. The nanocomposites were prepared via master batch by ultrasonically assisted solution mixing and subsequent conventional two-roll milling. A comprehensive study is presented, illustrating the impact of MLG on curing and mechanical properties; e.g. replacing 2.5 phr ATH with 3 phr MLG increased the Young's modulus by over 60% and hardness by 10%, while improving flame retardancy, and reducing the total heat evolved by 10%. MLG is a multifunctional filler, as demonstrated by various enhancements in terms of the mechanical and flame retardancy properties of the rubber composites. KW - Nanocomposite KW - Rubber KW - Graphene PY - 2018 DO - https://doi.org/10.1016/j.polymertesting.2018.01.035 SN - 0142-9418 SN - 1873-2348 VL - 66 SP - 268 EP - 279 PB - Elsevier Ltd. AN - OPUS4-44457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiu, Y. A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Qian, L. A1 - Liu, Z. A1 - Schartel, Bernhard T1 - Improved flame retardancy by synergy between cyclotetrasiloxane and phosphaphenanthrene/triazine compounds in epoxy thermoset N2 - A siloxane compound (MVC) and a bi-group phosphaphenanthrene/triazine compound (TGD) were employed in epoxy thermosets to explore high-efficiency flame retardant systems. With only 1wt% MVC and 3wt% TGD, an epoxy thermoset passed UL 94 V-0 rating test and achieved a limiting oxygen index value of 34.0%, exhibiting an excellent flame retardant effect. The MVC/TGD system not only decreased the peak value of heat release rate and effective heat of combustion but also imparted an improved charring ability to thermosets, thereby outstandingly reducing the flammability of 1%MVC/3%TGD/EP. Compared with the fire performance of 4%TGD/EP and 4%MVC/EP, the MVC/TGD system showed an obvious flame retardant synergistic effect, mainly depending on the general improvement of flame inhibition, charring and barrier effects of the thermoset during combustion. Evolved gas analysis combinedwith condensed-phase pyrolysis product Analysis jointly revealed the details of the changed pyrolysis mode. KW - Flame retardant KW - Epoxy resin KW - Synergy KW - Siloxane KW - DOPO KW - Triazine PY - 2017 DO - https://doi.org/10.1002/pi.5466 SN - 0959-8103 SN - 1097-0126 VL - 66 IS - 12 SP - 1883 EP - 1890 PB - Wiley AN - OPUS4-42950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - The impact of polyaniline in phosphorus flame retardant ethylene-propylene-diene-rubber (EPDM) N2 - Usually elastomers are loaded with high amounts of flame retardants to fulfill fire safety requirements. In this study the potential char precursor polyaniline (PANI) and the established fire retardant pentaerythritol (PER) were implemented in ethylene-propylene-diene monomer rubber (EPDM). PANI and PER were used in low loadings (7 phr) and combined with two phosphorous flame retardants, Ammonium polyphosphate (APP) and a piperazine-pyrophosphate/phosphoric acid compound (FP), to boost their performance. A comprehensive study is presented, explaining the impact of PANI on curing and mechanical properties, including compensation for the plasticizer-like effect of APP in EPDM, and improved flame retardancy. In the cone calorimeter test, the combination of EPDM/FP/PANI reduced the effective heat of combustion by 20%. All nine EPDM rubber compounds were investigated with the LOI and UL 94 tests, cone calorimeter, FMVSS 302 and glow wire testing to quantify fire performance. The PANI containing EPDM rubbers, EPDM/APP/PANI and EPDM/FP/PANI outperformed the corresponding PER containing, EPDM/APP/PER and EPDM/FP/PER rubbers in various tests. Moreover, the study investigated the impact of PANI and PER on the mode of action of the phosphorus species and showed that the addition of PANI increased the amount of phosphorus in the condensed phase. To receive a broader understanding of the flame retardant mode of action of PANI in combination with APP and FP, calculations were carried out to estimate the impact of PANI on the protective layer effect. KW - EPDM KW - Rubber KW - Flame retardant KW - Polyaniline KW - Pentaerythritol PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.019 SN - 0040-6031 VL - 673 SP - 92 EP - 104 PB - Elsevier B.V. AN - OPUS4-47503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -