TY - JOUR A1 - Schartel, Bernhard A1 - Wendorff, J. H. T1 - Molecular composites for molecular reinforcement: A promising concept between success and failure N2 - The basic principles of molecular reinforcement and especially the specific approaches to obtain homogeneous composites with molecularly dispersed rigid rods are focused on and discussed. Brief overviews and successful examples of the available data covering the main characteristics are summarized. KW - Verbundwerkstoffe KW - Molecular Reinforcement KW - Homogene Mischbarkeit PY - 1999 SN - 0032-3888 SN - 1548-2634 VL - 39 IS - 1 SP - 128 EP - 151 PB - Wiley CY - Hoboken, NY AN - OPUS4-731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Hennecke, Manfred A1 - Kettner, A. A1 - Wendorff, J. H. T1 - On the thermal behaviour and thermo-oxidative stability of liquid crystalline triphenylene compounds N2 - Columnar discotic materials are considered for applications in the area of photoconductivity and light-emitting diodes. A major requirement is their stability at elevated temperatures and in the presence of oxygen. The thermal and thermo-oxidative behaviour of discotic triphenylene derivatives was investigated by us using various methods, in particular by chemiluminescence (CL), UV-vis absorption spectroscopy and in situ thermogravimetry-mass spectroscopy (TG-MS). Various degradation processes are described for increasing temperature, and their influences on functional properties are discussed. KW - Liquid crystal KW - Oxidation KW - Thermogravimetry PY - 1999 DO - https://doi.org/10.1002/(SICI)1099-0712(199903/04)9:2<55::AID-AMO366>3.3.CO;2-R SN - 1057-9257 SN - 1099-0712 VL - 9 IS - 2 SP - 55 EP - 64 PB - Wiley CY - Chichester AN - OPUS4-732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Chemiluminescence: A promising new testing method for plastic optical fibers N2 - The thermo-oxidative degradation of a polymeric optical cable is investigated by chemiluminescence, The results are reliable and reproducible. Two distinct processes are reported marked by a peak and a plateau behavior versus the time, respectively. Both processes are ruled by thermally activated processes. Beside the dependencies of temperature and time, the influence of absorbed water is discussed. Chemiluminescence is proposed as a promising candidate for a suitable testing method assessing the thermo-oxidative stability of plastic optical fibers and cables. it requires not more than a simple one-day testing procedure and has the advantage that it can be carried out even within the lo cv temperature ranges of the cables' intended use. KW - Chemiluminescence KW - Chemilumineszenz PY - 1999 DO - https://doi.org/10.1109/50.803022 SN - 0733-8724 SN - 1558-2213 VL - 17 IS - 11 SP - 2291 EP - 2296 PB - Institute of Electrical and Electronics Engineers CY - New York, NY AN - OPUS4-718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Hennecke, Manfred A1 - Grell, M. A1 - Bradley, D.D.C. T1 - Polarized fluorescence and orientational order parameters of a liquid-crystalline conjugated polymer N2 - We report a study of the orientational order of aligned thin films of the liquid crystalline conjugated polymer poly(9,9-dioctylfluorene). Steady state polarized fluorescence measurements were used to determine the orientational order parameter and . The influence of intermolecular and intramolecular excitation energy transfer on the degree of polarization is discussed. The role of film morphology is also examined by comparison of the results for glassy and crystalline films. KW - Liquid-cristalline conjugated Polymer KW - Polarized fluorescence measurements PY - 1999 SN - 1098-0121 SN - 0163-1829 SN - 0556-2805 SN - 1095-3795 SN - 1550-235X VL - 60 IS - 1 SP - 277 EP - 283 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Schartel, Bernhard T1 - Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system N2 - Polymeric nanocomposites are discussed as one of the most promising advanced materials whose nanoscale effects can be exploited for industry. Layered silicate polypropylene-graft-maleic anhydride nanocomposites are investigated as a model to clarify the potential of such materials in terms of fire retardancy. The nanostructure is characterized using transmission electron microscopy (TEM) and shear viscosity. The fire behavior is characterized using different external heat fluxes in cone calorimeter, limiting oxygen index and UL 94 classification. A comprehensive fire behavior characterization is presented which enables an assessment of the materials’ potential with respect to different fire scenarios and fire tests. The influence of morphology and the active mechanisms are discussed, such as barrier formation and changed melt viscosity. To our knowledge, it is the first attempt to illuminate the concept’s strengths, such as the reduction of flame spread, and weaknesses, such as the lack of influence on ignitability, in a clear, comprehensive and detailed manner. KW - Fire retardancy KW - Nanocomposites KW - Cone Calorimeter KW - LOI KW - UL94 KW - Flame retardance KW - poly(propylene) (PP) KW - Organoclay PY - 2004 UR - http://www3.interscience.wiley.com/cgi-bin/jissue/109085890 SN - 1042-7147 SN - 1099-1581 VL - 15 IS - 7 SP - 355 EP - 364 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-3706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Fire Retardancy Mechanisms of Phosphorus in Thermoplastics KW - Fire retardancy KW - Red Phosphorus KW - Cone Calorimeter KW - TG-FTIR KW - TG-MS KW - HIPS KW - PBT KW - PA 66 PY - 2004 SN - 0743-0515 VL - 91 SP - 152 EP - 153 PB - Division of Polymeric Materials Science and Engineering, American Chemical Society CY - Washington, DC AN - OPUS4-3971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Damerau, Thomas A1 - Hennecke, Manfred T1 - Photo- and thermo-oxidative stability of aromatic spiro-linked bichromophoric cross-shaped molecules N2 - An extensive investigation of the photostability and the thermo-oxidative stability is presented for 2,2,7,7-tetrakis(biphenyl-4-yl)-9,9-spirobifluorene and 2,2,4,4,7,7-hexakis(biphenyl-4-yl)-9,9-spirobifluorene. Both compounds are conjugated fully aromatic systems that are being discussed as active functional materials for a variety of advanced applications. The effect of atmosphere, sample thickness and preparation procedure on photo-oxidative degradation are investigated in detail by absorption and fluorescence spectroscopy. Distinct mechanisms are described in terms of relevant parameters such as the quantum yields of the photo-oxidation and the fluorescence. No oxidative degradation could be detected under nitrogen. In ambient air a strong decrease of the fluorescence performance is found due to effective quenching by defective chromophores. Chemiluminescence investigations were performed to characterise the thermo-oxidative behaviour in the temperature region between 300 and 450 K. It becomes clear that even a stable chemical structure such as the investigated aromatic system does not guarantee sufficient photostability with regard to light emitting properties. About this Journal PY - 2000 DO - https://doi.org/10.1039/b004931j SN - 1463-9076 SN - 1463-9084 VL - 2 IS - 20 SP - 4690 EP - 4696 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-1002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Hennecke, Manfred T1 - Thermo-oxidative stability of a conjugated polymer by chemiluminescence N2 - Conjugated polymers based on 1,4-phenylenevinylene units are very promising materials for applications as light-emitting diodes. A major requirement is their stability at elevated temperatures of operation. The thermo-oxidative behaviour of a soluble poly(1,4-phenylenevinylene) derivative, poly[2,5-bis(2-ethylhexyloxy)-1,4-phenylene vinylene], was investigated by using chemiluminescence and UV–Vis absorption spectroscopy. Extremely sensitive chemiluminescence is successfully applied since even minor chemical changes could lead to a considerable loss of photo- and electro-optical properties. Various degradation processes are described as a function of time and temperature and their influences on functional properties are discussed. The investigated material does not show sufficient thermo-oxidative stability within the temperature range of intended use in contact with air. For industrial application, direct contact with oxygen during processing and operation has to be avoided. KW - Chemiluminescence KW - Conjugated polymer KW - Thermal-oxidation KW - Stability PY - 2000 DO - https://doi.org/10.1016/S0141-3910(99)00120-2 SN - 0141-3910 SN - 1873-2321 VL - 67 IS - 2 SP - 249 EP - 253 PB - Applied Science Publ. CY - London AN - OPUS4-853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Excitation energy transfer of a bichromophoric cross-shaped molecule investigated by polarized fluorescence spectroscopy N2 - The excitation energy transfer (EET) of a bichromophoric cross-shaped molecule was investigated by stationary polarized fluorescence spectroscopy in the solid state. For this purpose 2,2[prime],7,7[prime]-tetrakis(biphenyl-4-yl)-9,9[prime]-spirobifluorene was embedded in a polymeric bisphenol-A-polycarbonate (PC) matrix. The dependence of the fluorescence on concentration and wavelength was determined. The role of the intermolecular and intramolecular EET is dealt with separately and discussed by means of the degree of polarization. The intermolecular excitation energy transfer is described in terms of a Förster transfer mechanism. The intramolecular transfer is prevented for the zero-point vibrational levels by the molecular cross-shaped structure, but is found for a wide range of wavelength, presumably based on vibrationally excited states. PY - 2000 DO - https://doi.org/10.1063/1.481620 SN - 0021-9606 SN - 1089-7690 VL - 112 IS - 22 SP - 9822 EP - 9827 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-1038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kühn, Gerhard A1 - Mix, Renate A1 - Friedrich, Jörg Florian T1 - Surface Controlled Fire Retardancy of Polymers Using Plasma Polymerisation N2 - Communication: Fire retardant coatings are deposited on polyamide-66 using plasma polymerisation. Chemical composition and thickness of deposits are adjusted varying the plasma treatment based on hexamethydisiloxane mixed with oxygen. The fire retardancy performances are evaluated using a cone calorimeter. The correlation between fire retardancy and thickness as well as chemical composition is discussed. KW - Cone calorimeter KW - Flame retardance KW - Heat release KW - Plasma polymerization KW - Polyamides PY - 2002 DO - https://doi.org/10.1002/1439-2054(20020901)287:9<579::AID-MAME579>3.0.CO;2-6 SN - 1438-7492 SN - 1439-2054 VL - 287 IS - 9 SP - 579 EP - 582 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-1537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar T1 - Red Phosphorus-Controlled Decomposition for Fire Retardant PA 66 N2 - The thermal degradation and the combustion behavior of glass fiber-reinforced PA 66 materials containing red phosphorus were investigated. Thermogravimetry (TG), TG coupled with FTIR, and TG coupled with mass spectroscopy were used to investigate the thermal decomposition. The flame retardant red phosphorus was investigated with respect to the decomposition kinetics and the release of volatile products. The combustion behavior was characterized using a cone calorimeter. Fire risks and fire hazards were monitored versus external heat fluxes between 30 and 75 kW/m2. Red phosphorus acts in the solid phase and its efficiency depends on the external heat flux. The use of red phosphorus results in an increased amount of residue and in a corresponding decrease in total heat release. The decrease of the mass loss rate peak results in a corresponding decrease of the peak heat release. With increasing external heat flux applied the first effect on the total heat release decreases linearly, whereas the second effect on the peak heat release expands linearly. The investigation provides insight into the mechanisms of how the fire retardant PA 66 is achieved by red phosphorus controlling the degradation kinetics. Taking into account that a decrease of the volatile products also leads to a decrease of heat production in the flame zone and that the char acts as heat transfer barrier, a reduced pyrolysis temperature is suggested as a further feedback effect. T2 - 8th European Conference on fire retardant polymers CY - Alessandria, Italy DA - 2001-06-24 KW - PA 66 KW - Red phosphorus KW - Fire retardancy KW - TG-FTIR KW - Cone calorimeter PY - 2002 DO - https://doi.org/10.1002/app.10144 SN - 0021-8995 SN - 1097-4628 VL - 83 IS - 10 SP - 2060 EP - 2071 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-1234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar A1 - Tidjani, Adams T1 - ZnS as fire retardant in plasticised PVC N2 - The flame retardant effect of zinc sulphide (ZnS) in plasticised poly(vinyl chloride) (PVC-P) materials was investigated. PVC-P containing different combinations of additives such as 5% ZnS, 5% of antimony oxide (Sb2O3) and 5% of mixtures based on Sb2O3 and ZnS were compared. The thermal degradation and the combustion behaviour were studied using thermogravimetry (TG), coupled with FTIR (TG-FTIR) or with mass spectroscopy (TG-MS), and a cone calorimeter, respectively. A detailed and unambiguous understanding of the decomposition and release of the pyrolysis products was obtained using both TG-MS and TG-FTIR. The influence of ZnS, Sb2O3 and the corresponding mixtures on the thermal decomposition of PVC-P was demonstrated. Synergism was observed for the combination of the two additives. The combustion behaviour (time to ignition, heat release, smoke production, mass loss, CO production) was monitored versus external heat fluxes between 30 and 75 kW m-2 with the cone calorimeter. Adding 5% of ZnS has no significant influence on the fire behaviour of PVC-P materials beyond a dilution effect, whereas Sb2O3 works as an effective fire retardant. Synergism of ZnS and Sb2O3 allows the possibility of replacing half of Sb2O3 by ZnS to reach equivalent fire retardancy. KW - PVC KW - ZnS KW - Fire retardancy KW - TG-FTIR KW - Cone calorimeter PY - 2002 DO - https://doi.org/10.1002/pi.845 SN - 0959-8103 SN - 1097-0126 SN - 0007-1641 VL - 51 IS - 3 SP - 213 EP - 222 PB - Wiley InterScience CY - Chichester, West Sussex AN - OPUS4-1291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lehmann, M. A1 - Schartel, Bernhard A1 - Hennecke, Manfred A1 - Meier, H. T1 - Dendrimers consisting of stilbene or distyrylbenzene building blocks synthesis and stability N2 - On the basis of Wittig-Horner reactions and protection group techniques compound 7 for the core and the components 9a-c and 11a-c for the dendrons were prepared and linked in the final step. The convergent synthesis yielded constitutionally and configurationally pure dendrimers (2a-c, 2a'-c') which consist of distyrylbenzene units. Their thermo-oxidative stability in the presence of air was studied by chemiluminescence and compared to the dendrimers 1 consisting of stilbene units. KW - Chemiluminescence KW - Dendrimers KW - Diphenylethylenderivate KW - Oxidation KW - Wittig reactions PY - 1999 DO - https://doi.org/10.1016/S0040-4020(99)00823-6 SN - 0040-4020 SN - 1464-5416 VL - 55 IS - 47 SP - 13377 EP - 13394 PB - Elsevier Science CY - Kidlington AN - OPUS4-1539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Bartholmai, Matthias A1 - Neubert, Dietmar A1 - Schriever, Robert T1 - TG-MS and TG-FTIR applied for an unambiguous thermal analysis of intumescent coatings N2 - Thermogravimetry (TG), thermogravimetry coupled with mass spectroscopy (TG-MS) and thermogravimetry coupled with Fourier transform infrared spectroscopy (TG-FTIR) were used to characterise the thermo-oxidative behaviour of two intumescent coating materials. The temperature dependence, the corresponding volatile products and the amount of residue of the different processes were determined. Using both TG-MS and TG-FTIR results in an unambiguous interpretation of the volatile products. Characteristics such as the influence of endothermic reactions, the release of non-flammable gases, the dehydrogenation enhancing the char formation and the stability of the cellular char were discussed in detail. It was demonstrated, that TG, TG-MS and TG-FTIR are powerful methods to investigate mechanisms in intumescent coatings and that they are suitable methods in respect to quality assurance and unambiguous identification of such materials. KW - Intumescent coating materials KW - TG KW - TG-FTIR KW - TG-MS PY - 2002 DO - https://doi.org/10.1023/A:1022272707412 SN - 1388-6150 SN - 1418-2874 SN - 0368-4466 SN - 1572-8943 VL - 70 IS - 3 SP - 897 EP - 909 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-2133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhning, Martin A1 - Tidjani, Adams A1 - Wald, Oliver A1 - Brzezinka, Klaus-Werner A1 - Turky, Gamal A1 - Goering, Harald A1 - Schartel, Bernhard A1 - Schönhals, Andreas T1 - Dielectric and gas transport properties of polypropylene-clay nanocomposites T2 - Frühjahrstagung des Arbeitskreises Festkörperphysik bei der DPG CY - Regensburg, Germany DA - 2002-03-11 PY - 2002 SN - 0420-0195 SN - 0372-5448 SN - 0343-9216 IS - CPP 5.4 SP - 425 CY - Bad Honnef AN - OPUS4-2036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartwig, A. A1 - Pütz, D. A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Wendschuh-Josties, M. T1 - Combustion behaviour of epoxide based nanocomposites with ammonium and phosponium bentonites N2 - The influence of different organobentonites on the decomposition and the combustion behaviour of an epoxy resin were examined. The epoxy resin is a cationically polymerised cycloaliphatic epoxy resin flexibilised with poly(tetrahydrofuran) (PTHF), with hydroxyl endgroups. The bentonite was modified with either an ammonium or a phosphonium salt. The thermal decomposition of the PTHF induced by the initiator, used for the cationic polymerisation, did neither take place for the nanocomposite based on the ammonium bentonite nor for that based on the phosphonium bentonite. This improved decomposition characteristic lead to a larger time to ignition for both kinds of nanocomposites compared to the not modified polymer, which is not the case for other polymer/clay nanocomposites described in the literature. The fire behaviour was investigated using limiting oxygen index (LOI), a horizontal burner test and a cone calorimeter. The forced flaming conditions in the cone calorimeter were varied using different external heat fluxes between 30 and 70 kW · m-2. The fire behaviour of the nanocomposites was improved in comparison to the polymer, and phosphonium bentonite was superior to ammonium bentonite. The main mechanism is a barrier formation resulting in a reduction of the fire growth rate, which was more pronounced in the case of high external heat fluxes. KW - Cationic polymerisation KW - Clay KW - Combustion KW - Degradation KW - Epoxide KW - Nanocomposite PY - 2003 DO - https://doi.org/10.1002/macp.200300047 SN - 1022-1352 SN - 1521-3935 VL - 204 IS - 18 SP - 2247 EP - 2257 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-2801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tidjani, Adams A1 - Wald, Oliver A1 - Pohl, M.-M. A1 - Hentschel, Manfred P. A1 - Schartel, Bernhard T1 - Polypropylene-graft-maleic anhydride-nanocomposites: I-Characterization and thermal stability of nanocomposites produced under nitrogen and in air N2 - The morphology and thermal behaviour of polypropylene–graft–maleic anhydride (PP–g–MA) layered silicate (montmorillonite) nanocomposites were investigated using X-ray diffraction, transmission electron microscopy, differential scanning calorimetry and thermogravimetry. The study focuses on the influence of the presence of oxygen during the preparation of PP–g–MA–nanocomposite using two different modified clays. The nanocomposites show tactoid, intercalated and exfoliated structures side by side with different dominant states depending on the clay used and on the processing conditions. The systems are described as multi-component blends rather than binary blends since the organic ions do not only change the mixing behaviour, but also influence material properties. Beside the physical barrier property of the clay layers also chemical processes were found to play an important role. KW - Polypropylene-graft-maleic anhydride KW - Montmorillonites KW - Nanocomposites KW - X-ray KW - Thermal stability PY - 2003 DO - https://doi.org/10.1016/S0141-3910(03)00174-5 SN - 0141-3910 SN - 1873-2321 VL - 82 IS - 1 SP - 133 EP - 140 PB - Applied Science Publ. CY - London AN - OPUS4-2773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Schwarz, U. A1 - Reinemann, S. T1 - Fire Retardancy of Polypropylene/Flax Blends N2 - A comprehensive characterization of the thermal and the fire behaviour is presented for polypropylene (PP) flax compounds containing ammonium polyphosphate (APP) and expandable graphite as fire retardants. Thermogravimetry coupled with an evolved gas analysis (TG-FTIR) was performed to ensure a significant thermal analysis. The fire response under forced flaming conditions was studied using a cone calorimeter. The external heat flux was varied between 30 and 70 kW m-2 so that the results could be evaluated for different fire scenarios and tests. Different flammability tests (UL 94, limiting oxygen index, glow wire test, GMI 60261) were performed and the results compared with the cone calorimeter data. The different char forming mechanisms are described and the resulting fire retardancy is classified. The successful and ecological friendly fire retardancy is a technological breakthrough for PP/flax biocomposites. KW - Biosomposites KW - Flame retardancy KW - Flax PY - 2003 DO - https://doi.org/10.1016/S0032-3861(03)00692-X SN - 0032-3861 SN - 1873-2291 VL - 44 IS - 20 SP - 6241 EP - 6250 PB - Springer CY - Berlin AN - OPUS4-2640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartholmai, Matthias A1 - Schriever, Robert A1 - Schartel, Bernhard T1 - Influence of external heat flux and coating thickness on the thermal insulation properties of two different intumescent coatings using cone calorimeter and numerical analysis N2 - Polymeric intumescent coatings are fire protective materials that increase their thermal resistance when exposed to high temperatures to prevent building structures from damage. The idea of the investigation was to develop a simple test method to determine the time dependent thermal conductivity of intumescent coatings. Therefore steel plates were coated with two different intumescent systems. During cone calorimeter tests the temperature at the back side of the coated plates was measured. These results were used to calculate the time dependent thermal resistance of the protective layer with the simulation program IOPT2D for different external heat fluxes and different layer thickness. KW - Intumescent coatings KW - Thermal resistance KW - Cone calorimetry KW - Numerical analysis PY - 2003 DO - https://doi.org/10.1002/fam.823 SN - 0308-0501 SN - 1099-1018 VL - 27 IS - 4 SP - 151 EP - 162 PB - Heyden CY - London AN - OPUS4-2633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Müller, Patrick A1 - Bertin, Annabelle A1 - Schartel, Bernhard T1 - Hyperbranched Rigid Aromatic Phosphorus-Containing Flame Retardants for Epoxy Resins N2 - A rigid aromatic phosphorus-containing hyperbranched flame retardant structure is synthesized from 10-(2,5 dihydroxyphenyl)-10H-9-oxa- 10-phosphaphenanthrene-10-oxide (DOPO-HQ), tris(4-hydroxyphenyl)phosphine oxide (THPPO), and 1,4-terephthaloyl chloride (TPC). The resulting poly-(DOPO-HQ/THPPO-terephthalate) (PDTT) is implemented as a flame retardant into an epoxy resin (EP) at a 10 wt% loading. The effects on EP are compared with those of the monomer DOPO-HQ and triphenylphosphine oxide (OPPh3) as low molar mass flame retardants. The glass transition temperature, thermal decomposition, flammability (reaction to small flame), and burning behavior of the thermosets are investigated using differential scanning calorimetry, thermogravimetric analysis, pyrolysis combustion flow calorimetry, UL 94-burning chamber testing, and cone calorimeter measurements. Although P-contents are low at only 0.6 wt%, the study aims not at attaining V-0, but at presenting a proof of principle: Epoxy resinswith PDTT show promising fire performance, exhibiting a 25% reduction in total heat evolved (THE), a 30% reduction in peak heat release rate (PHRR) due to flame inhibition (21% reduction in effective heat of combustion (EHC)), and an increase in Tg at the same time. This study indicates that rigid aromatic hyperbranched polymeric structures offer a promising route toward multifunctional flame retardancy. KW - Hyperbranched KW - Aromatic KW - Phosphorus KW - Phosphine oxide KW - DOPO KW - Flame retardant KW - Xpoxy resin KW - Rigid PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525910 DO - https://doi.org/10.1002/mame.202000731 SN - 1439-2054 VL - 306 IS - 4 SP - 731 PB - Wiley AN - OPUS4-52591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -