TY - JOUR A1 - Gallo, Emanuela A1 - Fan, Z. A1 - Schartel, Bernhard A1 - Greiner, A. T1 - Electrospun nanofiber mats coating - new route to flame retardancy N2 - A novel route toward halogen-free fire retardancy of polymers through innovative surface coating is described. Nanofiber mats based on polyimide are deposited on PA66 through electrospinning. Scanning electron microscopy is used to characterize the nanofibers. Cone calorimeter tests were performed to evaluate the fire performance. Because of their low thermal conductivity, electrospun nanofiber mats act not only as sacrificial layers but also as a protective surface that delays ignition. The effect is influenced by the fiber diameters and the imidization. KW - Electrospinning KW - Polyimide KW - Nanofibers KW - Fire retardancy PY - 2011 DO - https://doi.org/10.1002/pat.1994 SN - 1042-7147 SN - 1099-1581 VL - 22 IS - 7 SP - 1205 EP - 1210 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-24093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Kleemeier, M. A1 - Yu, D. A1 - Hartwig, A. T1 - Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites N2 - A quantitative experimental assessment of flame retardancy by the heat shielding in epoxy layered silicate nanocomposite (EP/TPPMMT) is presented. Online heat flux measurements and temperature monitoring within the specimen are performed during the burning in the cone calorimeter. For EP the surface layer equals a pyrolysis front. The reradiation by the hot surface corresponds to the fourth power of the pyrolysis temperature. The surface reradiation (around 10 kW m-2) is thus fairly invariable over burning time and different external heat fluxes. Further, the thermal feedback of the flame is approximated to 20 kW m-2 for both EP and EP/TPPMMT and invariable over different irradiations. Thus the net heat fluxes transformed to the fuel release rate within the pyrolysis front of EP are increased to 45–80 kW m-2 when irradiations of 35–70 kW m-2 are applied. For a residue-forming EP/TPPMMT the surface temperature and thus the reradiation (42–68 kW m-2) crucially increases compared to EP and with increasing irradiation. The net heat fluxes are reduced to 13–22 kW m-2 accordingly. This quantitative assessment of the heat shielding in EP/TPPMMT goes along with proportional and consistent improvement in the fire performance, such as the pyrolysis front velocity, the heat release rate (HRR) characteristics such as averaged and quasi-steady-state HRR and the peak HRR (PHRR). The heat shielding is proven to be the only major flame retardancy effect occurring in nanocomposites based on non-charring polymers. KW - Nanocomposites KW - Heat shielding KW - Flame retardancy KW - Shielding effect PY - 2012 DO - https://doi.org/10.1016/j.combustflame.2012.07.003 SN - 0010-2180 SN - 1556-2921 VL - 159 IS - 12 SP - 3616 EP - 3623 PB - Elsevier CY - New York, NY AN - OPUS4-26841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabir Mahr, Muhammad A1 - Hübert, Thomas A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Sabel, Martin A1 - Militz, H. T1 - Fire retardancy effects in single and double layered sol-gel derived TiO2 and SiO2-wood composites N2 - Sol–gel derived TiO2 and SiO2-wood inorganic composites are prepared by direct vacuum infiltration of silicon and titanium alkoxide based precursors in pine sapwood in one or two cycles followed by a controlled thermal curing process. The resulting flame retardancy effect is investigated under two different fire scenarios using cone calorimetry and oxygen index (LOI). Heat release rates (HRR) especially the values for the second peak, are reduced moderately for all single layered composites. This effect is more pronounced for double layered composites where HRR was reduced up to 40 % showing flame retardancy potential in developing fires. Beside this, smoke release was lowered up to 72 % indicating that these systems had less fire hazards compared to untreated wood, whereas no meaningful improvement is realized in terms of fire load (total heat evolved) and initial HRR increase. However impressively, the LOI of the composites were increased up to 41 vol% in comparison to 23 vol% for untreated wood displaying a remarkable flame retardancy against reaction to a small flame. An approximate linear interdependence among the fire properties and the material loading as well as fire residue was observed. A residual protection layer mechanism is proposed improving the residue properties for the investigated composites. KW - Wood KW - Sol-gel KW - Composite materials KW - Cone calorimeter KW - Fire retardance KW - Flammability PY - 2012 DO - https://doi.org/10.1007/s10971-012-2877-5 SN - 0928-0707 SN - 1573-4846 VL - 64 IS - 2 SP - 452 EP - 464 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-27618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Kleemeier, M. A1 - Hartwig, A. T1 - Flammability of layered silicate epoxy nanocomposites combined with low-melting inorganic ceepree glass N2 - Tetraphenylphosphonium modified layered silicate epoxy nanocomposite (EP/TPPMMT) combined with low-melting silicate glass, Ceepree (CP) is investigated by thermal analysis, flammability tests and cone calorimeter at different heat fluxes. Adding CP and TPPMMT does not change the pyrolysis apart from increasing inorganic residue. The total heat evolved (THE) is changed insignificantly, as neither relevant additional carbonaceous charring nor flame inhibition occurs. However, flame retardancy is clearly observed due to an inorganic-carbonaceous surface protection layer. The peak heat released rate (PHRR) is reduced by around 32–42% when 5 wt% TPPMMT is added, and 51–63% when 10 wt% CP is added. PHRR reduction less than expected is observed when both additives are combined. The reduction is greater than that achieved by using TPPMMT but less than when only CP is used. The morphology of fire residue is investigated by scanning electron microscope on different length scales and turns out to be the key to understanding the efficiency of flame retardancy. The fire residue of EP/CP shows a layered structure, whereas separated columns limit the barrier properties for EP/5%TPPMMT on the micrometer scale. Columns dominating the fire residue structure of EP/5%TPPMMT/10%CP deteriorate the fire retardancy, whereas a more integral structure at the top of the residue causes the improvement over EP/5%TPPMMT. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers KW - Flame retardancy KW - Nanocomposites KW - Low melting glasses KW - Epoxy resin KW - Ceepree PY - 2012 DO - https://doi.org/10.1002/pen.22111 SN - 0032-3888 SN - 1548-2634 VL - 52 IS - 3 SP - 507 EP - 517 PB - Wiley CY - Hoboken, NY AN - OPUS4-25590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bier, A.K. A1 - Bognitzki, M. A1 - Schmidt, A. A1 - Greiner, A. A1 - Gallo, Emanuela A1 - Klack, Patrick A1 - Schartel, Bernhard T1 - Synthesis, properties, and processing of new siloxane-substituted poly(p-xylylene) via CVD N2 - The synthesis of a disiloxane-functionalized [2.2]paracyclophane and its polymerization to the corresponding siloxane-substituted poly(p-xylylene) via chemical vapor deposition (CVD) has been described. Because of the enhanced solubility of the siloxane substituted poly(p-xylylene) analysis of the molecular structure by NMR, molecular weight, and polydispersity by gel permeation chromatography (GPC), and processing by film casting as well as nanofiber formation by electrospinning was possible. Structural isomers were found by NMR which was expected due to the isomeric mixture of the precursor. High molecular weights at moderate polydispersities were found by GPC which was unexpected for a vapor phase deposition polymerization. The amorphous morphology in combination with a low glass transition temperature led to high elongation at break for the siloxane substituted poly(p-xylylene). Significant difference for the wetting versus water was found for as-deposited films, solution cast films, and nanofibers obtained by electrospinning with contact angles up to 135° close to superhydrophobic behavior. KW - Poly(p-xylylene) KW - Siloxane functionalized PPX KW - Chemical vapor deposition KW - Difunctionalized [2.2]paracyclophanes KW - Gorham process PY - 2012 DO - https://doi.org/10.1021/ma2021369 SN - 0024-9297 SN - 1520-5835 VL - 45 IS - 2 SP - 633 EP - 639 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lorenzetti, A. A1 - Modesti, M. A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Besco, S. A1 - Roso, M. T1 - Synthesis of phosphinated polyurethane foams with improved fire behaviour N2 - Both alkylphosphinates and inorganic phosphinates (based on sodium, calcium, magnesium or zinc) have been recently proposed as flame retardants for polyesters, polyamides and polyurethane foams as well. The main aim of this work was to compare the flame retardant effectiveness of inorganic (already proofed in PU foams) and organic phosphinates in PU foams which have never been used in polyurethane (PU) foams. The thermal stability in nitrogen and air as well as limiting oxygen index and cone calorimeter behaviour have been studied to assess the effectiveness of such flame retardants in PU foams. The results obtained showed that both inorganic and organic phosphinates are effective in enhancing fire behaviour of PU foams since they improve thermal stability, LOI and fire performance. Cone calorimetry highlighted the flame inhibition action in the gas phase due to the release of phosphorus-containing molecules. The better results obtained for inorganic phosphinate are probably related to the better quality of the char layer developed during burning, but may also be related to the higher phosphorus content of such flame retardant with respect the other ones. It was also verified that both inorganic and organic phosphinate containing N-synergic compound showed a fuel dilution effect, deriving from water and/or ammonia release in the gas phase. KW - Phosphinate KW - Polyurethane foam KW - Flame retardancy KW - Fire behaviour PY - 2012 DO - https://doi.org/10.1016/j.polymdegradstab.2012.07.026 SN - 0141-3910 SN - 1873-2321 VL - 97 IS - 11 SP - 2364 EP - 2369 PB - Applied Science Publ. CY - London AN - OPUS4-26735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabir Mahr, Muhammad A1 - Hübert, Thomas A1 - Sabel, Martin A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Militz, H. T1 - Fire retardancy of sol-gel derived titania wood-inorganic composites N2 - Sol–gel technology was applied in tailoring novel wood-made-inorganic composites with improved thermal and fire properties. In practice, composites materials were prepared by impregnating pine sapwood wood with nano-scaled precursor solutions derived from titanium(IV) isopropoxide followed by a thermal curing process. Thermal and fire properties were evaluated by thermal analysis and cone calorimetry, whereas flammability was specified by oxygen index (LOI) and UL 94 test. Peak heat release rates were moderately reduced indicating fire retardance potential in terms of flame spread attributed to the appropriate protection layer action of the titania-based depositions. LOI (oxygen index) values of these composites were increased up to 38 vol.% in comparison to 23 vol.% for untreated wood. The flame retardancy performance depends on the fire scenario and is strongly influenced by wood loading and crackfree deposition of the titania layers inside the composite. PY - 2012 DO - https://doi.org/10.1007/s10853-012-6628-3 SN - 0022-2461 SN - 1573-4803 VL - 47 IS - 19 SP - 6849 EP - 6861 PB - Springer Science + Business Media B.V. CY - Norwell, Mass. AN - OPUS4-26235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard T1 - Towards evidence-based development of flame retarded polymers T2 - 243rd National ACS meeting - Spring 2012 CY - San Diego, CA, USA DA - 2012-03-25 KW - Flame retardancy KW - Halogen-free KW - Flame retardancy mechanism KW - Fire property assessment PY - 2012 SN - 978-0-8412-2727-9 SN - 1550-6703 N1 - Serientitel: PMSE Preprints – Series title: PMSE Preprints VL - 243 SP - 38-PMSE PB - Amer Chemical SOC CY - Washington, USA AN - OPUS4-26381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Heinz A1 - Schartel, Bernhard A1 - Weiß, André A1 - Braun, Ulrike T1 - SEM/EDX: Advanced investigation of structured fire residues and residue formation N2 - Heterogeneous, gradual or structured morphology of fire residues plays an important role in fire retardancy of polymers. A scanning electron microscope with an attached energy dispersive X-ray spectrometer (SEM/EDX) is highlighted as a powerful tool for the advanced characterization of such complex fire residues, since it offers high resolution in combination with both good depth of field and analysis of chemical composition. Two examples are presented: First, comprehensive SEM/EDX investigation on a complex structured fire residue of glass fibre reinforced polyamide 6,6 (PA 66-GF) flame retarded by diethylaluminium phosphinate, melamine polyphosphate and some zinc borate. A multilayered surface crust (thickness ~ 24 µm) covers a rather hollow area stabilized by GF glued together. The resulting efficient thermal insulation results in self-extinguishing before pyrolysis is completed, even under forced-flaming combustion. Second, sophisticated, quasi online SEM/EDX imaging of the formation of residual protection layer in layered silicate epoxy resin nanocomposites (LSEC). Burning specimens were quenched in liquid nitrogen for subsequent analyses. Different zones were distinguished in the condensed phase characterized by distinct processes such as melting and ablation of organic material, as well as agglomeration, depletion, exfoliation and reorientation of the LS. KW - Fire residue KW - SEM/EDX KW - Fire retardancy KW - PA 66 KW - Layered silicate KW - Diethylaluminium phosphinate PY - 2012 DO - https://doi.org/10.1016/j.polymertesting.2012.03.005 SN - 0142-9418 VL - 31 IS - 5 SP - 606 EP - 619 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-25802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Naumann, Maurice T1 - Structural integrity of sandwich structures in fire: an intermediate-scale approach N2 - A test set-up in intermediate scale was conceived to investigate the structural integrity of materials under fire. The task was to develop a realistic test scenario targeting component-like behaviour. Carbon-fibre-reinforced sandwich specimens (500 X 500 X 20 mm) were used to examine failure mechanisms, times to failure and critical failure loads under compression. Fire tests were performed with fully developed fire applied to one side of the specimen by an oil burner. In a first test series, the applied load was varied, but the fully developed fire remained unchanged. In general, times to failure were short. Decreased load levels resulted in prolonged times to failure and led to a different failure mechanism. Results obtained in the test series were compared with a bench-scale study (150 X 150 X 20 mm) investigating identical material. The comparison clearly revealed the influence of size on the time to failure and the load-bearing capacity. KW - Fire testing KW - Structural integrity KW - Carbon-fibre-reinforced plastics KW - Fully developed fire KW - Composites PY - 2013 DO - https://doi.org/10.1080/15685543.2013.816620 SN - 0927-6440 SN - 1568-5543 VL - 20 IS - 9 (Special Issue: ECCM15: Part 3) SP - 741 EP - 759 PB - VSP CY - Zeist AN - OPUS4-29647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lorenzetti, A. A1 - Besco, S. A1 - Hrelja, D. A1 - Roso, M. A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Modesti, M. T1 - Phosphinates and layered silicates in charring polymers: The flame retardancy action in polyurethane foams N2 - Nanocomposites of a charring polymer (like polyurethane foam) filled with aluminum phosphinate (AlPi) with or without melamine cyanurate (MelCy) have been prepared by microwave processing and their thermal stability and fire behavior have been studied. Results on the interaction between flame retardants and layered silicates were provided as well as detailed investigation of the char strength, which has been carried out using a suitably developed method based on dynamic-mechanic analysis. Generally, the thermo-oxidative stability in presence of layered silicates was higher than the counterparts even if an additive rather than synergic effect took place; however, in some cases the interaction between clays and phosphinate led to a significant decrease of weight residue. In nitrogen the residue amounts were about the same but a higher amount of phosphorus was retained in the solid phase in presence of clays. Cone calorimeter results showed that the use of phosphinates led to a decrease of the PHRR; further addition of clays did not reduce the PHRR owing to the worse quality of char layer as demonstrated by the char strength test. However, it has been shown that the partial substitution of aluminum phosphinate with melamine cyanurate gave improved results: the AlPi–MelCy filled foams showed similar pHRR and THE but lower TSR and higher char strength than AlPi filled foams. It was also confirmed that phosphinate acted by flame inhibition but its action was depressed by the use of nanoclays owing to their interaction. KW - Phosphinate KW - Nanocomposite KW - Polyurethane KW - Interaction KW - Flame retardant PY - 2013 DO - https://doi.org/10.1016/j.polymdegradstab.2013.08.002 SN - 0141-3910 SN - 1873-2321 VL - 98 IS - 11 SP - 2366 EP - 2374 PB - Applied Science Publ. CY - London AN - OPUS4-29281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Bettina A1 - Wartig, K.-A. A1 - Hofmann, D. A1 - Mülhaupt, R. A1 - Schartel, Bernhard T1 - Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites N2 - Herein, we examine the influence of adding functionalized graphene (FG), distinct expanded graphites and carbon nanofillers such as carbon black and multiwall carbon nanotubes on mechanical properties, morphology, pyrolysis, response to small flame and burning behavior of a V-2 classified flame-retarded polypropylene (PP). Among carbon fillers, FG and multilayer graphene (MLG) containing fewer than 10 layers are very effectively dispersed during twin-screw extrusion and account for enhanced matrix reinforcement. In contrast to the other fillers, no large agglomerates are detected for PP-FR/FG and PP-FR/MLG, as verified by electron microscopy. Adding FG to flame-retardant PP prevents dripping due to reduced flow at low shear rates and shifts the onset of thermal decomposition to temperatures 40°C higher. The increase in the onset temperature correlates with the increasing specific surface areas (BET) of the layered carbon fillers. The reduction of the peak heat release rate by 76% is attributed to the formation of effective protection layers during combustion. The addition of layered carbon nanoparticles lowers the time to ignition. The presence of carbon does not change the composition of the evolved pyrolysis gases, as determined by thermogravimetric analysis combined with online Fourier-transformed infrared measurements. FG and well-exfoliated MLG are superior additives with respect to spherical and tubular carbon nanomaterials. KW - Graphene KW - Flame retardancy KW - Nanocomposites KW - Polypropylene KW - Carbon nanoparticles PY - 2013 DO - https://doi.org/10.1002/pat.3165 SN - 1042-7147 SN - 1099-1581 VL - 24 IS - 10 SP - 916 EP - 926 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-29337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Perret, Birgit A1 - Dittrich, Bettina A1 - Ciesielski, M. A1 - Krämer, J. A1 - Müller, P. A1 - Altstädt, V. A1 - Zang, L. A1 - Döring, M. T1 - Flame retardancy of polymers: the role of specific reactions in the condensed phase N2 - Condensed-phase mechanisms play a major role in fire-retardant polymers. Generations of development have followed the concept of charring to improve fire properties. Whereas the principal reactions are believed to be known, the specific description for multicomponent systems is lacking, as is the picture across different systems. A two-step approach is proposed in general, and also presented in greater detail. The second step covers the specific reactions controlling charring, whereas the actual reactants are provided in the preceding step. This model consistently incorporates the variety of structure–property relationships reported. A comprehensive case study is presented on seven phosphorus flame retardants in two epoxy resins to breathe life into the two-step approach. KW - Charring KW - Epoxy KW - Flame retardancy KW - Pyrolysis KW - Thermogravimetric analysis (TGA) PY - 2016 DO - https://doi.org/10.1002/mame.201500250 SN - 1438-7492 SN - 1439-2054 VL - 301 IS - 1 SP - 9 EP - 35 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-35273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pappalardo, Salvatore A1 - Russo, Pietro A1 - Acierno, Domenico A1 - Rabe, Sebastian A1 - Schartel, Bernhard T1 - The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene N2 - The pyrolysis, flammability and fire behavior of polypropylene (PP) containing an intumescent flame retardant and sepiolite nanoparticles were investigated by performing thermogravimetry, oxygen index (LOI), UL-94, and cone calorimeter tests. The combination of 0.5 wt% of premodified sepiolite (OSEP) with 12 wt% of a commercial intumescent flame retardant showed a clear synergy in LOI, UL-94 ranking and peak heat release rate. The ternary formulation achieved a V-0 classification and, consequently, allowed a reduction in the amount of flame retardant necessary to achieve this result. Whereas OSEP and pristine sepiolite nanoparticles (SEP) affect the performance in PP nanocomposites quite similarly, OSEP outperformed SEP in the combination with intumescent flame retardant. The cone calorimeter results and dynamic rheological measurements confirmed the synergistic effect between the nanofiller and the flame retardant resulting from the improved properties of the residual protective layer. KW - Polypropylene KW - Intumescent flame retardant KW - Sepiolite KW - Cone calorimetry KW - Low oxygen index PY - 2016 DO - https://doi.org/10.1016/j.eurpolymj.2016.01.041 SN - 0014-3057 VL - 76 SP - 196 EP - 207 PB - Elsevier AN - OPUS4-35854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Patrick A1 - Schartel, Bernhard T1 - Melamine poly(metal phosphates) as flame retardant in epoxy resin: Performance, modes of action, and synergy N2 - Melamine poly(metal phosphates) (MPMeP) are halogen-free flame retardants commercialized under the brand Name Safire. Melamine poly(aluminum phosphate) (MPAlP), melamine poly(zinc phosphate) (MPZnP), and melamine poly(Magnesium phosphate) (MPMgP) were compared in an epoxy resin (EP). The thermal decomposition, flammability, burning behavior, and glass transition temperature were investigated using thermogravimetric analysis, pyrolysis combustion flow calorimeter, UL 94 testing, cone calorimeter, and differential scanning calorimetry. While the materials exhibited similarities in their pyrolysis, EP+MPZnP and EP+MPMgP showed better fire behavior than EP+MPAlP due to superior protective properties of the fire residues. Maintaining the 20 wt % loading, MPZnP was combined with various other flame retardants. A synergistic effect was evident for melamine polyphosphate (MPP), boehmite, and a derivative of 6H-Dibenzo[c,e][1,2]oxaphosphinine-6-oxide. The best overall performance was observed for EP+(MPZnP+MPP) because of the best protection effectiveness of the fire residue. EP +(MPZnP+MPP) achieved V1/V0 in UL 94, and an 80% reduction in the peak heat release rate. This study evaluates the efficiency of MPMeP in EP, alone and in combination with other flame retardants. MPMeP is a suitable flame retardant for epoxy resin, depending on its kind and synergists. KW - flame retardance KW - thermogravimetric analysis KW - thermosets PY - 2016 DO - https://doi.org/10.1002/APP.43549 SN - 0021-8995 SN - 1097-4628 VL - 133 IS - 24 SP - 43549 PB - Wiley AN - OPUS4-35855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Gettwert, V. A1 - Korzen, Manfred T1 - Protecting the structural integrity of composites in fire: Intumescent coatings in the intermediate scale N2 - The fire behaviour of light-weight material used in structural applications is regarded as the main challenge to be solved for mass transportation. The task is to perform realistic experiments, including a mechanical test scenario under fully developed fires, to improve the material's reliability in structural applications. Our approach utilises an intermediate-scale test set-up (specimen size 500 × 500 mm) to apply realistic compressive loads and fully developed fires directly to one side of a carbon-fibre-reinforced sandwich composite. Three different intumescent coatings were applied to sandwich structures and compared to a bench-scale study. The results emphasise intumescent coatings as a promising method to sustain fire resistance, multiplying the time to failure. Nevertheless, the realistic intermediate-scale test using severe direct flame application underlines the extremely short failure times when the actual composite components are tested without any additional insulation. KW - Carbon-fibre-reinforced KW - Fire stability KW - High-temperature properties KW - Mechanical testing KW - Fully developed fire KW - Post-crash scenario PY - 2015 DO - https://doi.org/10.1177/0731684415609791 SN - 0731-6844 SN - 1530-7964 VL - 34 IS - 24 SP - 2029 EP - 2044 PB - Technomic Publ. Co. CY - Westport, Conn. AN - OPUS4-35120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Antje A1 - Langfeld, Kirsten A1 - Ulmer, B. A1 - Andrievici, V. A1 - Hörold, Andreas A1 - Limbach, P. A1 - Bastian, Martin A1 - Schartel, Bernhard T1 - Halogen-free Multicomponent Flame Retardant Thermoplastic Styrene-Ethylene-Butylene-Styrene Elastomers Based on Ammonium Polyphosphate – Expandable Graphite Synergy N2 - Developing flame retarded thermoplastic elastomers (TPES) based on styrene−ethylene−butylene−styrene, polypropylene, and mineral oil is a challenging task because of their very high fire loads and flammability. A promising approach is the synergistic combination of expandable graphite (EG) and ammonium polyphosphate (APP). Cone calorimetry, oxygen index, and UL 94 classification were applied. The optimal EG:APP ratio is 3:1, due to the most effective fire residue morphology. Exchanging APP with melamine-coated APPm yielded crucial improvement in fire properties, whereas replacing EG/APP with melamine polyphosphate did not. Adjuvants, such as aluminum diethyl phosphinate (AlPi), zinc borate, melamine cyanurate, titanium dioxide, dipentaerylthritol, diphenyl-2-ethyl phosphate, boehmite, SiO2, chalk, and talcum, were tested. All flame retardants reinforced the TPE-S. The combination with AlPi is proposed, because with 30 wt % flame retardants a maximum averaged rate of heat emission below 200 kW m−2 and a V-0 rating was achieved. Multicomponent EG/APP/adjuvants systems are proposed as a suitable route to achieve efficient halogen-free flame retarded TPE-S. KW - Thermoplastic elastomers KW - Amonium polyphosphate KW - Expandable graphite KW - Synergy PY - 2017 DO - https://doi.org/10.1021/acs.iecr.7b01177 SN - 0888-5885 VL - 56 IS - 29 SP - 8251 EP - 8263 PB - ACS Publications AN - OPUS4-41509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Watolla, Marie-Bernadette A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Rickard, W.D.A. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - Intumescent geopolymer-bound coatings for fire protection of steel N2 - The passive fire protection of steel structures and other load-bearing components will continue to gain importance in future years. In the present contribution, novel intumescent aluminosilicate (geopolymer-bound) composites are proposed as fire-protective coatings on steel. Steel plates coated with these materials were exposed to the standard temperature-time curve as defined in ISO 834 – 1:1999. The coatings partially foamed during curing and expanded further during thermal exposure, demonstrating their intumescent characteristic.Thermogravimetryandoscillatory rheometry determined that the intumescent behavior is attributed to a transition to a viscous state (loss factor > 1) in the temperature range of major water release, differing from conventional geopolymers. XRD and SEM images showed that the coatings had characteristics of ceramic or glass-ceramic foams after fire resistance testing, suggesting superior performance under challenging conditions. The thickness of the coatings influenced their foaming and intumescent behavior and thus the time for the coated steel plates to reach 500 °C. A number of additives were also studied with the best performance obtained from samples containing sodium tetraborate.Acoating of just 6mmwas able to delay the time it takes for a steel substrate to reach 500 °C to more than 30 minutes. KW - Geopolymers KW - Fire protection KW - Intumescence KW - Coatings KW - Fire resistance PY - 2017 UR - https://www.ceramic-science.com/articles/all-articles.html?article_id=100558 DO - https://doi.org/10.4416/JCST2017-00035 VL - 8 IS - 3 (Topical issue: Geopolymers) SP - 351 EP - 364 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-42139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deng, C. A1 - Yin, Huajie A1 - Li, R.-M. A1 - Huang, S.-C. A1 - Schartel, Bernhard A1 - Wang, Y.-Z. T1 - Modes of action of a mono-component intumescent flame retardant MAPP in polyethylene-octene elastomer N2 - A mono-component intumescent flame retardant named ethylenediamine-modified ammonium polyphosphate (MAPP) is used in polyethylene-octene elastomer (POE). Insight into the flame-retardant mechanisms of the MAPP is provided from a new perspective. The fire performance of POE/MAPP composites is investigated by oxygen index (OI) and vertical burning (UL-94) tests. POE Composite containing 35 wt% MAPP achieves a V-0 rating, and its OI is 29.3 vol%. The thermogravimetric Analysis (TGA) and Fourier transform infrared spectra (FTIR) confirm that the incorporation of ethylenediamine changes the thermal decomposition of APP, mainly resulting in the formation of char layer with a thermally stable structure. Cone calorimeter analysis revealed the flame-retardant modes of action of MAPP in POE under forced-flaming conditions. Quantitative analysis illustrates that both the residue due to charring and the fuel dilution/flame Inhibition resulting from the release of incombustible products/ phosphorus species decrease the total heat release (fire load) by 20e28%. The residue increases linearly with increasing MAPP content, whereas the reduction in effective heat of combustion levels off. Moreover, the flame-retardant effect resulting from the protective properties of the char is discovered to be the dominant mode of action (up to 85% reduction) with respect to the peak heat release rate, leading to the excellent flame retardancy of POE/MAPP. KW - Ammonium polyphosphate KW - Flame retardant KW - Carbonization KW - Elastomer PY - 2017 DO - https://doi.org/10.1016/j.polymdegradstab.2017.03.006 SN - 0141-3910 SN - 1873-2321 VL - 138 SP - 142 EP - 150 PB - Elsevier AN - OPUS4-39901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Wilkie, Charles A. A1 - Camino, G. T1 - Recommendations on the scientific approach to polymer flame retardancy: Part 2 - concepts N2 - The usage of concepts in scientific communication is critical to our ability to inform the reader about work that has been performed. The significance and thus the quality of scientific discussion rely on the precise use of concepts. In this second part of a two-part paper, concerning the scientific basis of polymer fire retardancy, the proper use of concepts is addressed. Distinct concepts in flame retardancy are discussed, such as fire residue, the correlation of fire performance with char yield according to van Krevelen, catalysis, and wicking. Synergy is discussed in detail, as well as approaches to quantify it, due to its importance for flame retardant polymers. The preceding first paper (part 1) discussed the proper use of scientific terms, thermal analysis, and fire testing. Thus, together these two papers support the community by offering recommendations and addressing some of the most relevant points. They encourage to review scientific practice in the field of flame retardancy of polymers. KW - Char KW - Synergism KW - Flame retardancy KW - Flammability KW - Fire growth indices KW - Synergy index PY - 2017 DO - https://doi.org/10.1177/0734904116675370 SN - 0734-9041 SN - 1530-8049 VL - 35 IS - 1 SP - 3 EP - 20 PB - Sage AN - OPUS4-39084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Stöcklein, Waldemar A1 - Klack, Patrick A1 - Schartel, Bernhard T1 - Assessing the reaction to fire of cables by a new bench-scale method N2 - The recently approved EU Construction Products Regulation (CPR) applies to cables as construction products. The difficulty of predicting the fire performance of cables with respect to propagation of flame and contribution to fire hazards is well known. The new standard EN 50399 describes a full-scale test method for the classification of vertically mounted bunched cables according to CPR. Consideration of the material, time, and thus cost requires an alternative bench-scale fire test, which finds strong demand for Screening and development purposes. The development of such a bench-scale fire test to assess the fire Performance of multiple vertically mounted cables is described. A practical module for the cone calorimeter is proposed, simulating the fire scenario of the EN 50399 on the bench scale. The efficacy of this module in predicting full-scale CPR test results is shown for a set of 20 different optical cables. Key properties such as peak heat release rate (PHRR), fire growth rate (FIGRA), and flame spread are linked to each other by factors of around 5. In a case study, the bench-scale test designed was used to investigate the influence of the main components on the fire behaviour of a complex optical cable. KW - Optical cables KW - Construction products regulation KW - Bench-scale fire testing KW - Reaction to fire KW - Cone calorimeter PY - 2017 DO - https://doi.org/10.1002/fam.2417 SN - 0308-0501 SN - 1099-1018 VL - 41 IS - 6 SP - 768 EP - 778 PB - Wiley AN - OPUS4-42092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Schartel, Bernhard T1 - The rapid mass calorimeter: Understanding reduced-scale fire test results N2 - The effects of reducing specimen size on the fire behavior of polymeric materials were investigated by means of the rapid mass calorimeter, a high-throughput Screening instrument. Results from the rapid mass calorimeter were compared with those from the cone calorimeter. Correlation coefficients between the different measures of each method and between the two methods are discussed to elucidate the differences and similarities in the two methods. Materials with characteristic heat release rate (HRR) curves in the cone calorimeter were evaluated in detail. The rapid mass calorimeter produces valuable and interpretable results with HRR curve characteristics similar to cone calorimeter results. Compared to cone calorimeter measurements, material savings of 96% are achieved, while maintaining the Advantages of a macroscopic fire test. KW - Rapid mass calorimeter KW - High throughput KW - Cone calorimeter KW - Flame retardancy PY - 2017 DO - https://doi.org/10.1016/j.polymertesting.2016.11.027 SN - 0142-9418 VL - 57 SP - 165 EP - 174 PB - Elsevier AN - OPUS4-38739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gómez-Fernández, S. A1 - Günther, Martin A1 - Schartel, Bernhard A1 - Corcuera, M. A. A1 - Eceiza, A. T1 - Impact of the combined use of layered double hydroxides, lignin and phosphorous polyol on the fire behavior of flexible polyurethane foams N2 - Flexible polyurethane foams with densities of 40 ± 2 kg m−3 were prepared by combining different ecofriendly fillers such as layered double hydroxides (LDH) and kraft lignin (a byproduct of the pulp and paper industry) with a phosphorous polyol (E560) in order to study their effect on the mechanical performance and fire behavior of the foams. Two series of foams were prepared, some containing lignin or LDH separately, and some with a combination of both: one of the series was prepared without E560 (0E foam series) and the other with 5 parts per hundred of E560 polyol (5E series). The use of fillers resulted in increased viscosity of the reactive mixture, requiring higher blowing agent content in order to hold the density of the foams constant. It was observed that urea phase segregation was favored in the series of 0E foams due to their lower viscosity than the 5E series. This had consequent effects on the resilience, compression force deflection and compression set of these foams. In terms of fire behavior it was observed that while the limiting oxygen index decreased, cone calorimeter results showed that the combination of lignin, LDH and E560 decreased the heat release of the foams. In addition, the combination of fillers and E560 contributed to increase the viscosity of the pyrolysis products, preventing the dripping of the molten polymer, which is a key factor in flame propagation towards adjacent objects in fire scenarios. KW - Ligning KW - Foam KW - Flexible polyurethane foam KW - Flame retardant PY - 2018 SN - 0926-6690 VL - 125 SP - 346 EP - 359 PB - Elsevier B.V. AN - OPUS4-45971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Günther, Martin T1 - Flame retardancy of polyurethanes N2 - Polyurethanes (PU) represent one of the most versatile classes of plastics. They are processed and used as thermoplastic, elastomer, and thermoset. The requirements regarding flammability are correspondingly versatile. Depending on the material and the field of application, specific fire tests have to be fulfilled. This paper describes the different concepts used to fulfil these requirements by choosing the right raw materials and flame retardants. KW - Polyurethane KW - Flame retardant KW - Foam KW - Flammability KW - Pyrolysis KW - Cone calorimeter PY - 2020 VL - 17 IS - 1 SP - 44 EP - 48 PB - Dr. Gupta AN - OPUS4-50737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goller, Sebastian M. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - No business as usual: The effect of smoke suppressants commonly used in the flame retardant PA6.6 on smoke and fire properties N2 - As most of polymeric materials are inherently flammable, flame retardants (FR) are commonly used to reduce their fire risks. Nevertheless, these flame retardant materials are often detrimental to smoke parameters like specific optical density or smoke toxicity. The influence of several smoke suppressants (SP)-zinc stannate, zinc phosphate, titanium oxide and hydrotalcite-were investigated with respect to flame retardancy, smoke emission, particle emission and smoke toxicity in a diethyl aluminum phosphinate (AlPi) flame retardant polyamide 6.6 (PA6.6). It was shown that the interaction between SP, FR and polymer is crucial for smoke and fire properties and can change the mode of action of the FR as well the decomposition mechanism of the polymer. Small amounts of SP show less effect on forced flaming behavior and the optical density, but they can influence flammability and the particle size distribution of the soot particles. The flame retardancy was significantly enhanced by 5 wt.-% zinc stannate in PA6.6 under forced flaming conditions. The charring mechanism was improved, and the mode of action of AlPi switched from the gas to the condensed phase. This resulted of in a reduced PHRR and TSP and an increase in residue yield. The smoke toxicity and optical density were reduced in the smoke density chamber as well. The smoke particles shifted to smaller sizes as the time in the pyrolytic zone increased. The formation of a dense char is assumed to be the key factor to enhance smoke suppression and flame retardancy properties. KW - Polyamide 6.6 KW - Smoke suppression KW - Flame retardancy KW - Zinc stannate KW - Smoke density PY - 2023 DO - https://doi.org/10.1016/j.polymdegradstab.2023.110276 SN - 0141-3910 VL - 209 PB - Elsevier Ltd. AN - OPUS4-56981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Beck, Uwe A1 - Bahr, Horst A1 - Hertwig, Andreas A1 - Knoll, Uta A1 - Weise, Matthias T1 - Sub-micrometre coatings as an infrared mirror: a new route to flame retardancy N2 - Most of the polymeric materials used are easy to ignite and show extensive flame spread along their surfaces. Apart from extensive heat release rates, their short time to ignition (tig), in particular, is a key fire hazard. Preventing ignition eliminates fire hazards completely. Protection layers that shift tig by more than an order of magnitude are powerful flame retardancy approaches presenting an alternative to the usual flame retardancy concepts. Coatings are proposed that consist of a three-layer system to ensure adhesion to the substrate, acting as an infrared (IR) mirror and protecting against oxidation. The IR-mirror layer stack is realised by physical vapour deposition in the sub-micrometre (<1 µm) range, reducing heat absorption by up to an order of magnitude. Not only is the ease of ignition diminished (tig is increased by several minutes), the flame spread and fire growth indices are also remarkably reduced to as little as 1/10 of the values of the uncoated polymers open for further optimization. Sub-micrometre thin IR-mirror coatings yielding surface absorptivity <0.1 are proposed as a novel and innovative flame retardancy approach. KW - Coating KW - Fire protection KW - Physical vapour deposition (PVD) KW - IR mirror KW - Ignition PY - 2012 DO - https://doi.org/10.1002/fam.1122 SN - 0308-0501 SN - 1099-1018 VL - 36 IS - 8 SP - 671 EP - 677 PB - Heyden CY - London AN - OPUS4-27210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Marti, J.M. A1 - Butler, K.M. A1 - Rossi, R. A1 - Idelsohn, S.R. A1 - Onate, E. A1 - Hofmann-Böllinghaus, Anja T1 - Modelling the vertical UL 94 test: competition and collaboration between melt dripping, gasification and combustion N2 - An experimental and numerical investigation of the effect of bisphenol A bis(diphenyl phosphate) (BDP) and polytetrafluoroethylene (PTFE) on the fire behaviour of bisphenol A polycarbonate/acrylonitrile butadiene styrene (PC/ABS) in the vertical UL 94 scenario is presented. Four PC/ABS blends were discussed, which satisfy different UL 94 classifications due to the competing effects of gasification, charring, flame inhibition and melt flow/dripping. For numerical investigation, the particle finite element method (PFEM) is used. Its capability to model the complex fire behaviour of polymers in the UL 94 is analysed. The materials' properties are characterised, in particular the additives impact on the dripping behaviour during thermal exposure. BDP is an efficient plasticiser; adding PTFE prevents dripping by causing a flow limit. PFEM simulations reproduce the dripping and burning behaviour, in particular the competition between gasification and dripping. The thermal impact of both the burner and the flame is approximated taking into account flame inhibition, charring and effective heat of combustion. PFEM is a promising numerical tool for the investigation of the fire behaviour of polymers, particularly when large deformations are involved. Not only the principal phenomena but also the different UL 94 classifications and the extinction times are well predicted. KW - Melt dripping KW - UL 94 KW - Particle finite element method (PFEM) KW - Simulation KW - Bisphenol A polycarbonate/acrylonitrile butadiene styrene (PC/ABS) KW - Polytetrafluoroethylene (PTFE) KW - Bisphenol A bis(diphenyl phosphate) (BDP) PY - 2015 DO - https://doi.org/10.1002/fam.2257 SN - 0308-0501 SN - 1099-1018 VL - 39 IS - 6 SP - 570 EP - 584 PB - Heyden CY - London AN - OPUS4-34285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Linteris, G.T. A1 - Stoliarov, S.I. A1 - Lyon, R.E. A1 - Walters, R.N. A1 - Hofmann-Böllinghaus, Anja T1 - Prediction of the mass loss rate of polymer materials: Impact of residue formation N2 - Two different numerical simulation tools, Fire Dynamic Simulator (FDS) and ThermaKin, are investigated with respect to their capability to predict the mass loss rate of polymer materials exposed to different fires. For validation, gasification apparatus and cone calorimeter tests are conducted. The main focus is on the influence of residue formation. Therefore, poly (butylene terephthalate) (PBT) and PBT reinforced with glass fibres (PBT-GF) are investigated and compared. PBT decomposes almost completely, while PBT-GF forms residue. The materials are characterised in order to provide suitable input parameters. Additionally the total incident heat flux to the sample is measured. With accurate input parameters, FDS and ThermaKin predicted the pyrolysis behaviour of PBT very well. Only some limitations are identified regarding the residue-forming PBT-GF. Both numerical simulation tools demonstrate a high value regarding the assessment of parameters' relative impacts and thus the evaluation of optimisation routes in polymer and composite development. KW - Polymer KW - Pyrolysis simulation KW - Residue formation KW - Fire dynamics simulator (FDS) KW - ThermKin PY - 2012 DO - https://doi.org/10.1016/j.combustflame.2012.03.012 SN - 0010-2180 SN - 1556-2921 VL - 159 IS - 9 SP - 2974 EP - 2984 PB - Elsevier CY - New York, NY AN - OPUS4-26382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Bahr, Horst A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation N2 - The pyrolysis and fire behavior of glass-fiber reinforced poly(butylene terephthalate) (PBT/GF) with two different metal phosphinates as flame retardants in combination with and without melamine cyanurate (MC) were analyzed by means of thermogravimetry, thermogravimetry coupled with infrared spectroscopy, flammability, and cone calorimeter tests as well as scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence spectroscopy. In PBT/GF, dosages of 13-20% of the halogen-free flame retardant aluminum phosphinate or aluminum phosphinate in combination with MC fulfill the requirements for electrical engineering and electronics applications (UL 94 = V-0; LOI > 42%), whereas the use of the same amount of zinc phosphinate or zinc phosphinate in combination with MC does not improve the fire behavior satisfactorily (UL 94 = HB; LOI = 27-28%). The performance under forced flaming conditions (cone calorimeter) is quite similar for both of the metal phosphinates. The use of aluminum and zinc salts results in similar flame inhibition predominantly due to the release of the phosphinate compounds in the gas phase. Both metal phosphinates and MC interact with the polymer changing the decomposition characteristics. However, part of the zinc phosphinate vaporizes as a complete molecule. Because of the different decomposition behavior of the metal salts, only the aluminum phosphinate results in a small amount of thermally stable carbonaceous char. In particular, the aluminum phosphinate-terephthalate formed is more stable than the zinc phosphinate-terephthalate. The small amount of char has a crucial effect on the thermal properties and mechanical stability of the residue and thus the flammability. KW - Flame retardance KW - Polyester KW - Phosphinates KW - Pyrolysis KW - Cone calorimeter PY - 2008 DO - https://doi.org/10.1002/pat.1147 SN - 1042-7147 SN - 1099-1581 VL - 19 IS - 6 SP - 680 EP - 692 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-17620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Bünker, J. T1 - Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants N2 - Fire resistance has become a key property for structural lightweight sandwich components in aviation, shipping, railway vehicles, and construction. The development of future composite materials and components demands adequate test procedures for simultaneous application of compression and fully developed fire. Therefore an intermediate-scale approach (specimen size = 500 mm x 500 mm) is applied with compressive loads (up to 1 MN) and direct application of a burner to one side of the specimens, as established in aviation for severe burn-through tests. The influence of different core structures (polyvinylchloride foam, polyisocyanorate foam reinforced by stitched glass bridges, and balsa wood) was investigated for glass-fibre-reinforced sandwich specimens with and without flame retardants applied on the fabrics, in the matrix, and on surface for each specimen at the same time. Times to failure were increased up to a factor of 4. The intumescent coating prolongs the time to failure significantly. What is more, using the intrinsic potential of the front skin together with the core to protect a load bearing back skin in sandwich panels, the design of the core – here using the wood core – is the most promising approach. KW - Fire resistance KW - Fire stability KW - Glass-fibre-reinforced plastics KW - Composite KW - Core materials PY - 2017 DO - https://doi.org/10.1016/j.compstruct.2016.11.027 SN - 0263-8223 SN - 1879-1085 VL - 160 SP - 1310 EP - 1318 PB - Elsevier AN - OPUS4-38622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Schartel, Bernhard T1 - Interactions in multicomponent flame-retardant polymers: Solid-state NMR identifying the chemistry behind it N2 - Distinct approaches are used to reduce the fire risks of polymers, a key issue for many industrial applications. Among the variety of approaches, the use of synergy in halogen-free multicomponent systems is one of the most auspicious. To optimize the composition of such flame-retardant systems it is essential to understand the mechanisms and the corresponding chemistry in the condensed phase. In this work different methods are used, including cone calorimeter, thermogravimetry (TG), and TG-FTIR, with the main focus on the solid-state NMR analysis of the solid residues. The structural changes in the condensed phase of two thermoplastic elastomer systems based on copolymer styrene-ethylene-butadiene-styrene (TPE-S) were investigated: TPE-S/aluminium diethylphosphinate (AlPi)/magnesium hydroxide (MH) and TPE-S/AlPi/zinc borate (ZB)/poly(phenylene oxide) (PPO). Strong flame inhibition is synergistically combined with protective layer formation. 13C-, 27Al-, 11B- and 31P MAS NMR (magic angle spinning nuclear magnetic resonance) experiments using direct excitation with a single pulse and 1H–31P cross-polarization (CP) were carried out as well as double resonance techniques. Magnesium phosphates were formed during the pyrolysis of TPE-S/AlPi/MH, while for the system TPE-S/AlPi/ZB/PPO zinc phosphates and borophosphates were observed. Thus, the chemistry behind the chemical interaction was characterized unambiguously for the investigated systems. KW - Synergy KW - Solid-state NMR KW - Flame retardancy KW - SEBS KW - Aluminium diethylphosphinate KW - Magnesium hydroxide KW - Zinc borate KW - Poly(phenylene) oxide PY - 2015 DO - https://doi.org/10.1016/j.polymdegradstab.2015.08.018 SN - 0141-3910 SN - 1873-2321 VL - 121 SP - 116 EP - 125 PB - Applied Science Publ. CY - London AN - OPUS4-34306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Size is not all that matters: Residue thickness and protection performance of intumescent coatings made from different binders N2 - In addition to the acid source, charring agent, and blowing agent, the binder is a crucial part of an intumescent coating. Its primary task is to bind all compounds, but it also acts as a carbon source and influences the foaming process. A series of intumescent coatings based on five different binders was investigated in terms of insulation, foaming, mechanical impact resistance, and residue morphology. The Standard Time-Temperature modified Muffle Furnace (STT MuFu+ ) was used for the bench-scale fire resistance tests and provided data on temperature and residue thickness as well as well-defined residues. The residue morphology was analyzed by nondestructive m-computed tomography and scanning electron microscopy. A moderate influence of the binder on insulation performance was detected in the set of coatings investigated, whereas the foaming dynamics and thickness achieved were affected strongly. In addition, the inner structure of the residues showed a rich variety. High expansion alone did not guarantee good insulation. Furthermore, attention was paid to the relation between the microstructure transition induced by carbon loss due to thermo-oxidation of the char and the development of the thermal conductivity and thickness of the coatings during the fire test. KW - Intumescence KW - Morphology analysis KW - Computed tomography KW - Fire resistance KW - Bench-scale fire test KW - Fire protective coating PY - 2017 DO - https://doi.org/10.1177/0734904117709479 SN - 0734-9041 SN - 1530-8049 VL - 35 IS - 4 SP - 284 EP - 302 PB - Sage AN - OPUS4-40766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Revealing the inner secrets of intumescence: Advanced standard time temperature oven (STT Mufu+)—my‐computed tomography approach N2 - Intumescent coatings have been used for fire protection of steel for decades, but there is still a need for improvement and adaptation. The key parameters of such coatings in a fire Scenario are thermal insulation, foaming dynamics, and cohesion. The fire resistance tests, large furnaces applying the standard time temperature (STT) curve, demand coated full‐scale components or intermediate‐scale specimen. The STT Mufu+ (standard time temperature muffle furnace+) approach is presented. It is a recently developed bench‐scale testing method to analyze the performance of intumescent coatings. The STT Mufu+ provides vertical testing of specimens with reduced specimen size according to the STT curve. During the experiment, the foaming process is observed with a high‐temperature endoscope. Characteristics of this technique like reproducibility and resolution are presented and discussed. The STT Mufu+ test is highly efficient in comparison to common tests because of the reduced sample size. Its potential is extended to a superior research tool by combining it with advanced residue analysis (μ‐computed tomography and scanning electron microscopy) and mechanical testing. The benefits of this combination are demonstrated by a case study on 4 intumescent coatings. The evaluation of all collected data is used to create performance‐based rankings of the tested coatings. KW - Bench‐scale fire testing KW - Computed tomography KW - Fire resistance KW - Intumescence KW - Residue analysis KW - Standard time temperature furnace PY - 2017 DO - https://doi.org/10.1002/fam.2426 SN - 0308-0501 SN - 1099-1018 VL - 41 IS - 8 SP - 927 EP - 939 PB - Wiley AN - OPUS4-42754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Variation of intumescent coatings revealing different modes of action for good protection performance N2 - Thermal insulation and mechanical resistance play a crucial role for the performance of an intumescent coating. Both properties depend strongly on the morphology and morphological development of the foamed residue. Small amounts (4 wt%) of fiberglass, clay and a copper salt, respectively, are incorporated into an intumescent coating to study their influence on the morphology and Performance of the residues. The bench scale fire tests were performed on 75 x 75 x 2 mm³ coated steel plates according to the standard time–temperature curve in the Standard Time Temperature Muffle Furnace+ (STT Mufu+). It provided information about foaming dynamics (expansion rates) and thermal insulation. Adding the copper salt halved the expansion height, whereas the clay and fiberglass Change the height of the residue only moderately. The time to reach 500 °C was improved by 31% for clay and 15% for the other two fillers. Nondestructive micro computed tomography is used to assess the inner structure of the residues. A transition of the residue from a black, carbonaceous foam with closed cells into an inorganic, residual open cell sponge occurs at high temperatures. This transition is due to a loss of carbon; the change in microstructure is analyzed by scanning electron microscopy. Additional mechanical tests are performed and interpreted with respect to the results of the morphology analysis. Adding clay or copper salt improved the mechanical resistance tested by a factor 4. The additives significantly influence the thickness and foaming Dynamics as well as the inner structure of the residues, whereas their influence on insulation Performance is moderate. In conclusion, different modes of action are observed to achieve similar insulation performance during the fire test. KW - Intumescence KW - Coating KW - Bench scale fire testing KW - Computed tomography KW - Fire resistance PY - 2017 DO - https://doi.org/10.1007/s10694-017-0649-z SN - 0015-2684 SN - 1572-8099 VL - 53 IS - 4 SP - 1569 EP - 1587 PB - Springer AN - OPUS4-40751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Korwitz, A. A1 - Pospiech, D. A1 - Schartel, Bernhard T1 - Flame Retardant Combinations with Expandable Graphite/ Phosphorus/CuO/Castor Oil in Flexible Polyurethane Foams N2 - A series of flexible polyurethane foams (FPUFs) were prepared with single and different combinations of flame retardants and additives. Expandable graphite (EG), phosphorous polyol (OP), copper (II) oxide (CuO), and/or castor oil (CAS) were added to FPUF during the foam preparation in a one-step process. The purpose of the study is to evaluate the synergistic effects of the flame retardants, additives, and the presence of bio-based content on the mechanical properties, flame retardancy, and smoke behavior of FPUFs. The combination of 10 wt % EG and 5 wt % OP in FPUF significantly improves the char yield. In the cone calorimeter experiment, the char yield is nearly three times higher than that with 10 wt % EG alone. The smoke behavior is additionally evaluated in a smoke density chamber (SDC). Comparing the samples with a single flame retardant, 10 wt % EG in FPUF considerably reduces the amount of smoke released and the emission of toxic gases. Replacing the amount of 10 wt % polyether polyol in FPUF with CAS maintains the physical and mechanical properties and fire behavior and enhances the bio-based content. The presence of 0.1 wt % CuO in FPUF effectively reduces the emission of hydrogen cyanide. As a result, this study proposes a multicomponent flame retardant strategy for FPUF to enhance the biomass content and address the weaknesses in flame retardancy, smoke, and toxic gas emissions. A starting point is disclosed for future product development. KW - Flexible polyurethane foam KW - Flame retardancy KW - Synergistic effect KW - Smoke behavior KW - Expandable graphite KW - Bio-based PY - 2023 DO - https://doi.org/10.1021/acsapm.2c01969 SN - 2637-6105 VL - 5 IS - 3 SP - 1891 EP - 1901 PB - ACS AN - OPUS4-57507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Marti, J. M. A1 - Schartel, Bernhard T1 - High Heat Resistance Can Be Deceiving: Dripping Behavior of Polyamide 4.6 in Fire N2 - Polyamide 4.6 (PA46) is a high-heat-resistant polymer, but it has no dripping resistance under fire. Three commercial grades of PA46 are investigated under UL 94 vertical fire test conditions. Their performances are discussed based on the materials’ structural, thermal, and rheological properties. PA46 presents flaming drops, whereas dripping is prevented in the flame-retarded PA46. Friction-modified PA46 has increased flaming dripping. Temperature profiles of the specimens under fire and the temperature of the drops are measured by thermocouples. A UL 94 vertical test configuration consisting of two flame applications is designed to assess the quantitative dripping behavior of the set of materials by the particle finite element method (PFEM). Polymer properties (activation energy and Arrhenius coefficient of decomposition, char yield, density, effective heat of combustion, heat of decomposition, specific heat capacity, and thermal conductivity) in addition to rheological responses in high temperatures are estimated and measured as input parameters for the simulations. The dripping behavior obtained by simulated materials corresponds with the experimental results in terms of time and drop size. A consistent picture of the interplay of the different phenomena controlling dripping under fire appears to deliver a better understanding of the role of different materials’ properties KW - Dripping KW - UL 94 KW - PFEM KW - High heat resistance KW - Polyamide 4.6 KW - Flammability PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586015 DO - https://doi.org/10.1002/mame.202300091 SN - 1439-2054 SN - 1438-7492 VL - 308 IS - 10 SP - 1 EP - 11 PB - Wiley-VCH AN - OPUS4-58601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Battig, Alexander A1 - Schulze, Dietmar A1 - Agudo Jácome, Leonardo A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - Shape, orientation, interaction, or dispersion: valorization of the influence factors in natural rubber nanocomposites N2 - The addition of nanoparticles as reinforcing fillers in elastomers yields nanocomposites with unique property profiles, which opens the door for various new application fields. Major factors influencing the performance of nanocomposites are studied by varying the type and shape of nanoparticles and their dispersion in the natural rubber matrix. The industrial applicability of these nanocomposites is put into focus using two types of graphene and a nanoscale carbon black, all commercially available, and scalable processing techniques in the form of a highly filled masterbatch production via latex premixing by simple stirring or ultrasonically assisted dispersing with surfactant followed by conventional two-roll milling and hot pressing. Different processing and measurement methods reveal the potential for possible improvements: rheology, curing behavior, static and dynamic mechanical properties, swelling, and fire behavior. The aspect ratio of the nanoparticles and their interaction with the surrounding matrix prove to be crucial for the development of superior nanocomposites. An enhanced dispersing method enables the utilization of the improvement potential at low filler loadings (3 parts per hundred of rubber [phr]) and yields multifunctional rubber nanocomposites: two-dimensional layered particles (graphene) result in anisotropic material behavior with strong reinforcement in the in-plane direction (157% increase in the Young's modulus). The peak heat release rate in the cone calorimeter is reduced by 55% by incorporating 3 phr of few-layer graphene via an optimized dispersing process. KW - Graphene KW - Natural rubber KW - Nanocomposites KW - Anisotropy KW - Fire behavior PY - 2023 DO - https://doi.org/10.5254/rct.23.77961 SN - 0035-9475 SN - 1943-4804 VL - 96 IS - 1 SP - 40 EP - 58 PB - Allen Press CY - Lawrence (KA), USA AN - OPUS4-57568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - The quantification of anisotropy in graphene/natural rubber nanocomposites: Evaluation of the aspect ratio, concentration, and crosslinking N2 - In the processing of nanocomposites, high shear stresses at elevated tempera-tures orient two-dimensional nanoparticles like graphene. This orientationleads to anisotropic mechanical, thermal or barrier properties of the nanocom-posite. This anisotropy is addressed in this study by comparing graphene (few-layer graphene, FLG) with a nanoscaled carbon black (nCB) at a filler contentof 3 phr, by varying the vulcanization, and by comparing different FLG con-tents. Transmission electron microscopy gives insight into the qualitative ori-entation in the nanocomposite with FLG or nCB. The storage moduli paralleland normal to the orientation reveal the direction dependency of reinforce-ment through dynamic mechanical analysis (DMA). Dimensional swellingmeasurements show a restriction of the expansion parallel to the FLG orienta-tion, and an increased expansion normal to the orientation. The vulcanizationsystem and crosslinking determine the respective level of property values, andhigher crosslinking densities increase the anisotropy in DMA resulting invalues of up to 2.9 for the quantified anisotropy factor. With increasing FLGcontent, the anisotropy increases. A comparison of the results reveals swellingmeasurements as the most suitable method for the determination of anisot-ropy. Compared to recent literature, the presented processing induces higheranisotropy, leading to higher reinforcing effects in the direction of orientation KW - Natural rubber KW - Graphene KW - Nanocomposite KW - Mechanical properties KW - Swelling PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571522 DO - https://doi.org/10.1002/app.53753 SN - 1097-4628 VL - 140 IS - 16 SP - 1 EP - 15 PB - Wiley online library CY - Hoboken, New Jersey (USA) AN - OPUS4-57152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - Networking Skills: The Effect of Graphene on the Crosslinking of Natural Rubber Nanocomposites with Sulfur and Peroxide Systems N2 - Tailored crosslinking in elastomers is crucial for their technical applications. The incorporation of nanoparticles with high surface-to-volume ratios not only leads to the formation of physical networks and influences the ultimate performance of nanocomposites, but it also affects the chemical crosslinking reactions. The influence of few-layer graphene (FLG) on the crosslinking behavior of natural rubber is investigated. Four different curing systems, two sulfur-based with different accelerator-to-sulfur ratios, and two peroxide-based with different peroxide concentrations, are combined with different FLG contents. Using differential scanning calorimetry (DSC), vulcametry (MDR) and swelling measurements, the results show an accelerating effect of FLG on the kinetics of the sulfur-based curing systems, with an exothermic reaction peak in DSC shifted to lower temperatures and lower scorch and curing times in the MDR. While a higher accelerator-to-sulfur ratio in combination with FLG leads to reduced crosslinking densities, the peroxide crosslinkers are hardly affected by the presence of FLG. The good agreement of crosslink densities obtained from the swelling behavior confirms the suitability of vulcameter measurements for monitoring the complex vulcanization process of such nanocomposite systems in a simple and efficient way. The reinforcing effect of FLG shows the highest relative improvements in weakly crosslinked nanocomposites. KW - Nanocomposite KW - Elastomers KW - Graphene KW - Crosslinking KW - Network KW - Rubber KW - Vulcanization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560409 DO - https://doi.org/10.3390/polym14204363 VL - 14 IS - 20 PB - MDPI AN - OPUS4-56040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günther, Martin A1 - Lorenzetti, A. A1 - Schartel, Bernhard T1 - From Cells to Residues: Flame-Retarded Rigid Polyurethane Foams N2 - Rigid polyurethane foams (RPUFs) exhibit short times to ignition as well as rapid flame spread and are therefore considered to be hazardous materials. This paper focuses on the fire phenomena of RPUFs, which were investigated through a multimethodological approach. Water-blown polyurethane (PUR) foams without flame retardants (FRs) as well as waterblown PUR foams containing triethyl phosphate as a gas phase-active FR were examined. The aim of this study is to clarify the influence of the FR on the fire phenomena during combustion of the foams. Additionally, materials’ densitieswere varied to range from 30 to 100 kg/m3. Thermophysical properties were studied bymeans of thermogravimetry; fire behavior and flammability were investigated via cone calorimeter and limiting Oxygen index, respectively. During the cone calorimeter test, the temperature development inside the burning specimens was monitored with thermocouples, and cross sections of quenched specimens were examined visually, giving insight into the morphological changes during combustion. The present paper delivers a comprehensive study, illuminating phenomena occurring during foam combustion and the influence of a FR active in the gas phase. The superior fire performance of flameretarded PUR foams was found to be based on flame inhibition, and on increased char yield leading to a more effective protective layer. It was proven that in-depth absorption of radiation is a significant factor for estimation of time to ignition. Cross sections investigated with the electron scanning microscope exhibited a pyrolysis front with an intact foam structure underneath. The measurement of temperature development inside burning specimens implied a shift of burning behavior towards that of non-cellular materials with rising foam density. KW - Polyurethane KW - Rigid foams KW - Fire behavior PY - 2020 DO - https://doi.org/10.1080/00102202.2019.1634060 SN - 0010-2202 SN - 1563-521X VL - 192 IS - 12 SP - 2209 EP - 2237 PB - Taylor & Francis AN - OPUS4-51483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günther, Martin A1 - Levchik, S. V. A1 - Schartel, Bernhard T1 - Bubbles and collapses: Fire phenomena of flame-retarded flexible polyurethane foams N2 - Flexible polyurethane foams (FPUF) are easy to ignite and exhibit rapid flame spread. In this paper, the fire phenomena of two standard foam formulations containing tris (1,3-dichloro-2-propyl) phosphate (FR-2) and a halogen-freepoly (ethyl ethylene phosphate) (PNX), respectively, as flame retardants are compared. A multimethodological approach is proposed which combines standard fire tests as well as new investigatory approaches. The thermophysical properties of the foams were determined by thermogravimetric analysis (TG), reaction to small flames was studied by means of the limiting oxygen index (LOI) and UL 94 HBF test, and the burning behavior was investigated with the cone calorimeter. Further, temperature development in burning cone calorimeter samples was monitored using thermocouples, and rheological measurements were performed on pyrolyzed material, delivering insight into the dripping behavior of the foams. This paper gives comprehensive insight into the fire phenomena of flame-retarded FPUFs that are driven by the two-step decomposition behavior of the foams. LOI and UL 94 HBF tests showed a reduced flammability and reduced tendency to drip for the flame-retarded foams. TG and cone calorimeter measurements revealed that the two-step decomposition behavior causes two stages during combustion, namely structural collapse and pool fire. The flame-retardant mode of action was identified to take place primarily during the foam collapse and be based mainly on flame inhibition. However, some condensed-phase action was been measured, leading to significantly increased melt viscosity and improved dripping behavior for foams containing PNX. KW - Burning behavior KW - Flame retardant KW - Flexible PU foam PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512145 DO - https://doi.org/10.1002/pat.4939 SN - 1042-7147 SN - 1099-1581 VL - 31 IS - 10 SP - 2185 EP - 2198 PB - Wiley Online Libary AN - OPUS4-51214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Ma, C. A1 - Zhou, F. A1 - Hu, Y. A1 - Schartel, Bernhard T1 - Flame retardant flexible polyurethane foams based on phosphorous soybean-oil polyol and expandable graphite N2 - A phosphorous soybean-oil–based polyol was derived via epoxidation and ring opening reaction as an alternative to petrochemical-based polyol for the synthesis of flexible polyurethane foams (FPUFs). 5-wt.% and 10-wt.% of expandable graphite (EG) were added to further improve flame retardancy. The mechanical properties (tensile strength and compression stress) of the foams were investigated. Thermogravimetric analysis (TGA) coupled with Fourier-transform infrared (FTIR) were conducted to evaluate the pyrolysis; limiting oxygen index (LOI), UL 94 and cone calorimeter were performed to analyze the fire performance of the foams; smoke density chamber was used to investigate the smoke released during burning. When 10-wt.% of EG was used, the flame retardancy of the foams was much enhanced due to the synergistic effect between phosphorus and EG. The char yield was three times higher (54wt.%). The fire load MARHE approached 100 kWm−2, half of the value expected for a superposition. The combination of phosphorous polyols and EG is proposed as strategy for future flame retarded FPUFs. KW - Phosphorous soybean-oil–based polyol KW - Flexible polyurethane foam KW - Expandable graphite KW - Flame retardancy KW - Smoke measurement PY - 2021 DO - https://doi.org/10.1016/j.polymdegradstab.2021.109656 SN - 0141-3910 VL - 191 SP - 9656 PB - Elsevier Ltd. AN - OPUS4-52907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Müller, Patrick A1 - Bertin, Annabelle A1 - Schartel, Bernhard T1 - Hyperbranched Rigid Aromatic Phosphorus-Containing Flame Retardants for Epoxy Resins N2 - A rigid aromatic phosphorus-containing hyperbranched flame retardant structure is synthesized from 10-(2,5 dihydroxyphenyl)-10H-9-oxa- 10-phosphaphenanthrene-10-oxide (DOPO-HQ), tris(4-hydroxyphenyl)phosphine oxide (THPPO), and 1,4-terephthaloyl chloride (TPC). The resulting poly-(DOPO-HQ/THPPO-terephthalate) (PDTT) is implemented as a flame retardant into an epoxy resin (EP) at a 10 wt% loading. The effects on EP are compared with those of the monomer DOPO-HQ and triphenylphosphine oxide (OPPh3) as low molar mass flame retardants. The glass transition temperature, thermal decomposition, flammability (reaction to small flame), and burning behavior of the thermosets are investigated using differential scanning calorimetry, thermogravimetric analysis, pyrolysis combustion flow calorimetry, UL 94-burning chamber testing, and cone calorimeter measurements. Although P-contents are low at only 0.6 wt%, the study aims not at attaining V-0, but at presenting a proof of principle: Epoxy resinswith PDTT show promising fire performance, exhibiting a 25% reduction in total heat evolved (THE), a 30% reduction in peak heat release rate (PHRR) due to flame inhibition (21% reduction in effective heat of combustion (EHC)), and an increase in Tg at the same time. This study indicates that rigid aromatic hyperbranched polymeric structures offer a promising route toward multifunctional flame retardancy. KW - Hyperbranched KW - Aromatic KW - Phosphorus KW - Phosphine oxide KW - DOPO KW - Flame retardant KW - Xpoxy resin KW - Rigid PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525910 DO - https://doi.org/10.1002/mame.202000731 SN - 1439-2054 VL - 306 IS - 4 SP - 731 PB - Wiley AN - OPUS4-52591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Abdou-Rahaman Fadul, Naïssa A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Multifunctional graphene nanofiller in flame retarded polybutadiene/chloroprene/carbon black composites N2 - To curtail flammability risks and improve material properties, flame retardants (FRs) and fillers are mixed into rubbers. High loadings of aluminum trihydroxide (ATH) and carbon black (CB) are the most used FRs and reinforcing additive, respectively, in rubbers. To reduce loading without losing mechanical properties, partial substitution of ATH as well as CB by low amounts of multilayer graphene (MLG) nanoparticles is investigated. The high aspect ratio MLG is made of ten graphene sheets. In polybutadiene/chloroprene (BR/CR) nanocomposites 3 phr MLG replaced 15 phr CB and/or 3 phr ATH. Material and mechanical properties as well as fire behavior of the nanocomposites are compared to BR/CR with 20 phr CB both with and without 50 phr ATH. MLG appears as a promising nanofiller to improve the functional properties: replacement of CB improved rheological, curing, and mechanical properties; substitution of ATH improved nanocomposite properties without affecting flame retardancy. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Carbon black KW - Polybutadiene/chloroprene KW - Graphene PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523468 DO - https://doi.org/10.1515/epoly-2021-0026 SN - 1618-7229 VL - 21 IS - 1 SP - 244 EP - 262 PB - De Gruyter AN - OPUS4-52346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Schartel, Bernhard T1 - It Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams N2 - Due to the high flammability and smoke toxicity of polyurethane foams (PUFs) during burning, distinct efficient combinations of flame retardants are demanded to improve the fire safety of PUFs in practical applications. This feature article focuses on one of the most impressive halogen-free combinations in PUFs: expandable graphite (EG) and phosphorus-based flame retardants (P-FRs). The synergistic effect of EG and P-FRs mainly superimposes the two modes of action, charring and maintaining a thermally insulating residue morphology, to bring effective flame retardancy to PUFs. Specific interactions between EG and P-FRs, including the agglutination of the fire residue consisting of expanded-graphite worms, yields an outstanding synergistic effect, making this approach the latest champion to fulfill the demanding requirements for flame-retarded PUFs. Current and future topics such as the increasing use of renewable feedstock are also discussed in this article. KW - Synergy KW - Phosphorus-containing flame retardant KW - Expandable graphite KW - Polyurethane foams PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551958 DO - https://doi.org/10.3390/polym14132562 SN - 2073-4360 VL - 14 IS - 13 SP - 2562 PB - MDPI AN - OPUS4-55195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lenz, J. U. A1 - Pospiech, D. A1 - Komber, H. A1 - Korwitz, A. A1 - Kobsch, O. A1 - Paven, M. A1 - Albach, R. W. A1 - Günther, Martin A1 - Schartel, Bernhard T1 - Effective halogen-free flame-retardant additives for crosslinked rigid polyisocyanurate foams: Comparison of chemical structures N2 - The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10 dihydro-9-oxa-10 phosphaphenanthrene-10-oxide (DOPO)-containing compounds, among them a number of compounds not reported so far. These PIR foams are compared with PIR foams without FR and with standard FRs with respect to foam properties, thermal decomposition, and fire behavior. Although BPPO and DOPO differ by just one oxygen atom, the impact on the FR properties is very significant: when the FR is a filler or a dangling (dead) end in the PIR polymer network, DOPO is more effective than BPPO. When the FR is a subunit of a diol and it is fully incorporated in the PIR network, BPPO delivers superior results. KW - Flame retardant; KW - Dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide; BPPO KW - 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; DOPO KW - Polyisocyanurate; PIR KW - Rigid foam KW - Cone calorimeter KW - Pudovik reaction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567712 DO - https://doi.org/10.3390/ma16010172 SN - 1996-1944 VL - 16 IS - 1 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-56771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gleuwitz, F. Robert A1 - Battig, Alexander A1 - Schartel, Bernhard T1 - Tenebrio molitor Beetle as a “Nonvegan” Adjuvant to Flame Retardants in Tannic Acid-Based Epoxy Thermosets N2 - Material solutions that meet both circular bioeconomy policies and high technical requirements have become a matter of particular interest. In this work, a prospectively abundant proteinrich waste resource for the manufacturing of flame-retardant epoxy biocomposites, as well as for the synthesis of biobased flame retardants or adjuvants, is introduced. Different biomass fillers sourced from the cultivation of the mealworm beetle Tenebrio molitor are embedded in a bioepoxy resin cured with tannic acid and investigated regarding the fire performance of the thermosets. By means of spectroscopic and thermal analysis (attenuated total reflectance FTIR spectroscopy, thermogravimetric analysis-coupled FTIR spectroscopy, and differential scanning calorimetry), the influence of the biomass microparticles on the curing and thermal degradation behavior is evaluated. The final performance of the biocomposites is assessed based on fire testing methodology (limited oxygen index, UL-94, and cone calorimetry). Providing a high charring efficiency in the specific tannic acid-based epoxy matrix, the protein-rich adult beetle is further investigated in combination with commercial environmentally benign flame retardants in view of its potential as an adjuvant. The results highlight a char forming effect of nonvegan fillers in the presence of tannic acid, particularly during thermal decomposition, and point toward the potential of protein-based flame retardants from industrial insect rearing for future formulations. KW - Tannic acid KW - Flame retardancy KW - Sustainable KW - Epoxy resin KW - Insects PY - 2022 DO - https://doi.org/10.1021/acssuschemeng.2c00746 SN - 2168-0485 VL - 10 IS - 19 SP - 6313 EP - 6324 PB - ACS AN - OPUS4-54845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tomiak, F. A1 - Schartel, Bernhard A1 - Wolf, M. A1 - Drummer, D. T1 - Particle Size Related Effects of Multi-Component Flame-Retardant Systems in poly(butadiene terephthalate) N2 - Aluminum tris (diethylphosphinate) (AlPi) is known to have an efficient flame-retardant effect when used in poly(butadiene terephthalates) (PBT). Additionally, better flame-retardant effects can be achieved through the partial substitution of AlPi by boehmite in multi-component systems, which have been shown to be an effective synergist due to cooling effects and residue formation. Although the potential of beneficial effects is generally well known, the influence of particle sizes and behavior in synergistic compositions are still unknown. Within this paper, it is shown that the synergistic effects in flammability measured by limiting oxygen index (LOI) can vary depending on the particle size distribution used in PBT. In conducting thermogravimetric analysis (TGA) measurements, it was observed that smaller boehmite particles result in slightly increased char yields, most probably due to increased reactivity of the metal oxides formed, and they react slightly earlier than larger boehmite particles. This leads to an earlier release of water into the system enhancing the hydrolysis of PBT. Supported by Fourier transformation infrared spectroscopy (FTIR), we propose that the later reactions of the larger boehmite particles decrease the portion of highly flammable tetrahydrofuran in the gas phase within early burning stages. Therefore, the LOI index increased by 4 vol.% when lager boehmite particles were used for the synergistic mixture. KW - Flame retardants KW - Aluminum diethylphosphinate KW - Boehmite KW - Poly(butadiene terephthalates) (PBT) KW - Mechanical properties PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509286 DO - https://doi.org/10.3390/polym12061315 SN - 2073-4360 VL - 12 IS - 6 SP - 1315 PB - MDPI AN - OPUS4-50928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Häßler, Dustin A1 - Krüger, Simone A1 - Schartel, Bernhard A1 - Hothan, Sascha T1 - Beyond the standard time-temperature curve: Assessment of intumescent coatings under standard and deviant temperature curves N2 - Nowadays there are intumescent coatings available for diverse applications. There is no established assessment of their protection performance besides the standard time-temperature curve, but natural fire scenarios often play an important role. A reliable straightforward performance-based assessment is presented. The effective thermal conductivity per thickness is calculated based on intermediate-scale fire tests. The optimum thermal insulation, the time to reach it, and the time until contingent failure of the coating are used for an assessment independent of the heating curve. The procedure was conducted on four different commercially intumescent coatings for steel construction, one solvent-based, one waterborne, one epoxy-based, and a bandage impregnated with a waterborne coating. The performance was studied under four different but similar shaped heating curves with different maximum temperatures (standard time-temperature curve, hydrocarbon curve and two self-designed curves with reduced temperature). The thermal protection performance is crucially affected by the residue morphology. Therefore, a comprehensive morphology analysis, including micro-computed tomography and scanning electron microscopy, was conducted on small-scale residues (7.5 x 7.5 cm2). Two different types of inner structures and the residue surface after different heat exposures were discussed in terms of their influence on thermal protection performance. KW - Intumescence KW - Coating KW - Computed tomography KW - Small scale KW - Heating curves KW - Residue morphology PY - 2020 DO - https://doi.org/10.1016/j.firesaf.2020.102951 SN - 0379-7112 VL - 112 SP - 102951 PB - Elsevier Ltd. AN - OPUS4-50334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Combination of phosphorous flame retardants and aluminum trihydrate in multicomponent EPDM composites N2 - Ethylene propylene diene monomer (EPDM) Rubbers with the flame retardants tris(2-ethylhexyl)phosphate, ammonium polyphosphate, polyaniline, and aluminum trihydroxide were prepared and analyzed in this study. The homogenous dispersion of the fillers in the rubber matrix was confirmed by scanning electron microscope. To investigate the interplay of the different flame retardants, the flame retardants were varied systematically. The comprehensive study sought combinations of flame retardants that allow high loadings of flame retardants without deterioration of the physical and mechanical properties of the EPDM rubber. The eight EPDM rubbers were investigated via thermogravimetric analysis and pyrolysis gas chromatography coupled with a mass spectrometer (Py GC/MS) to investigate the potential synergistic effects. In the Py-GC/MS experiments, 27 pyrolysis products were identified. Furthermore, UL 94, limiting oxygen index, FMVSS 302, glow wire tests, and cone calorimeter tests were carried out. In the cone calorimeter test the EPDM rubbers R-1AP and R-1/2P achieved an increase in residue at flameout of 76% and a reduction in total heat evolved of about 35%. Furthermore, the compounds R-1AP and R-1/2P achieved a reduction in MARHE to about 150 kW m−1, a reduction of over 50% compared to the unprotected rubber R. KW - EPDM KW - Rubber KW - Aluminum hydroxide (ATH) KW - Phosphorous flame retardant PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502859 DO - https://doi.org/10.1002/pen.25280 SN - 1548-2634 VL - 60 IS - 2 SP - 267 EP - 280 PB - Wiley AN - OPUS4-50285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Kukofka, Tobias A1 - Ruder, J. A1 - Schartel, Bernhard T1 - Durability of the flame retardance of ethylene-vinyl acetate copolymer cables: Comparing different flame retardants exposed to different weathering conditions N2 - Scientific publications addressing the durability of the flame retardance of cables during their long-term application are rare and our understanding lacks. Three commercial flame retardants, aluminum hydroxide, aluminum diethyl phosphinate (AlPi-Et), and intumescent flame retardant based on ammonium polyphosphate, applied in ethylene-vinyl acetate copolymer (EVA) model cables, are investigated. Different artificial aging scenarios were applied: accelerated weathering (UV-irradiation/temperature/rain phases), humidity exposure (elevated temperature/humidity), and salt spray exposure. The deterioration of cables’ surface and flame retardancy were monitored through imaging, color measurements, attenuated total reflectance Fourier transform infrared spectroscopy, and cone calorimeter investigations. Significant degradation of the materials’ surface occurred. The flame retardant EVA cables are most sensitive to humidity exposure; the cable with AlPi-Et is the most sensitive to the artificial aging scenarios. Nevertheless, substantial flame retardance persisted after being subjected for 2000 h, which indicates that the equivalent influence of natural exposure is limited for several years, but less so for long-term use. KW - Durability KW - Flame retardant KW - Cable KW - Weathering KW - Cone calorimeter PY - 2020 DO - https://doi.org/10.1002/APP.47548 SN - 0021-8995 VL - 137 IS - 1 SP - 47548 PB - Wiley AN - OPUS4-50237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Markwart, J. C. A1 - Wurm, F. R. A1 - Schartel, Bernhard T1 - Sulfur's role in the flame retardancy of thio-ether–linked hyperbranched polyphosphoesters in epoxy resins N2 - Hyperbranched polyphosphoesters are promising multifunctional flame retardants for epoxy resins. These polymers were prepared via thiol-ene polyaddition reactions. While key chemical transformations and modes of actions were elucidated, the role of sulfur in the chemical composition remains an open question. In this study, the FR-performance of a series of phosphorus-based flame retardant additives with and without sulfur (thioethers or sulfones) in their structure are compared. The successful synthesis of thio-ether or sulfone-containing variants is described and verified by 1H and 31P NMR, also FTIR and MALDI-TOF. A decomposition process is proposed from pyrolytic evolved gas analysis (TG-FTIR, Py-GC/MS), and flame retardancy effect on epoxy resins is investigated under pyrolytic conditions and via fire testing in the cone calorimeter. The presence of sulfur increased thermal stability of the flame retardants and introduced added condensed phase action. Likely, Sulfur radical generation plays a key role in the flame-retardant mode of action, and sulfones released incombustible SO2. The results highlight the multifunctionality of the hyperbranched polymer, which displays better fire performance than its low molar mass thio-ether analogue due to the presence of vinyl groups and higher stability than its monomer due to the presence of thio-ether groups. KW - Phosphoester KW - Hyperbranched KW - Sulfur KW - Thio-ether KW - Flame retardant KW - Epoxy resin PY - 2020 DO - https://doi.org/10.1016/j.eurpolymj.2019.109390 SN - 0014-3057 VL - 122 SP - 109390 PB - Elsevier Ltd. AN - OPUS4-50238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Dripping and decomposition under fire: Melamine cyanurate vs. glass fibres in polyamide 6 N2 - Manipulating the melt dripping of thermoplastics makes a fire scenario more or less dangerous. Yet, a detailed understanding of this phenomenon has remained a question mark in studies of the flammability of plastics. In this work, the individual and collective impacts of additives on the dripping behaviour of polyamide 6 (PA6) were studied. A set of materials compounded with melamine cyanurate (MCA) and glass fibre (GF) was investigated. Under UL 94 vertical test conditions, the dripping during first and second ignition was quantified and investigated in detail. The number, size and temperature of the drops were addressed, and the materials and their drops evaluated with respect to such aspects as their averaged molecular weight, thermal decomposition and rheological properties. PA6 with V-2 classification improved to V-0 with the addition of MCA, and achieved HB in the presence of GF. PA6/GF/MCA achieved V-2. Non-flaming drops of PA6/MCA consisted of oligomeric fragments. Flaming drops of PA6/GF showed a more pronounced decomposition of PA6 and an increased GF content. The dripping behaviour of PA6/GF/MCA can be understood as a combination of the influence of both additives. The results showed nicely that dripping under fire is neither a straightforward material property nor a simple additive influence, but the complex response of the material influenced by the interaction and competition of different phenomena. KW - Dripping KW - UL 94 KW - Polyamide 6 KW - Melamine cyanurate KW - Glass fibre KW - Flame retardant PY - 2020 DO - https://doi.org/10.1016/j.polymdegradstab.2019.109048 SN - 0141-3910 VL - 171 SP - 109048 PB - Elsevier Ltd. AN - OPUS4-50239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Garfias González, Karla I. A1 - Schartel, Bernhard T1 - Valorizing “non-vegan” bio-fillers: Synergists for phosphorus flame retardants in epoxy resins N2 - Sustainable, biogenic flame retardant adjuvants for epoxy resins are receiving increased focus. Zoological products like insects, bone meal, and eggshells are available in large quantities, but remain uninvestigated as functional fillers to epoxy resins, although they are potential synergists to flame retardants. The efficacy and flame retardancy of “non-vegan” additives in combination with flame retardants is investigated and the fire behavior and thermal decomposition of bio-sourced epoxy resin composites is characterized. By comparing the fire performance of composites containing flame retardants or fillers at varying loadings (5, 10, and 20%), their role as synergists that enhance the function of organophosphorus flame retardants in bio-epoxy composites is identified and quantified. Peak heat release rates were 44% lower in composites containing both filler and flame retardant versus those containing only flame retardants, and fire loads were reduced by 44% versus the pure resin, highlighting the ability of “non-vegan” fillers to function as synergists. KW - Flame retardancy KW - Synergy KW - Bio-composite KW - Epoxy resin KW - Biogenic KW - Renewable PY - 2022 DO - https://doi.org/10.1016/j.polymdegradstab.2022.109875 SN - 0141-3910 VL - 198 SP - 109875 PB - Elsevier Ltd. AN - OPUS4-54438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Battig, Alexander A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Huth, Christian A1 - Böhning, Martin A1 - Schartel, Bernhard T1 - Multifunctional Property Improvements by Combining Graphene and Conventional Fillers in Chlorosulfonated Polyethylene Rubber Composites N2 - The incorporation of nanoparticles like multilayer graphene (MLG) into elastomeric composites boosts their technical performance, such as their mechanical behavior and electrical conductivity. Common filler types (carbon black (CB) and aluminum trihydroxide (ATH)) generally fulfill single, specific purposes and are often used in high loadings. CB typically reinforces rubber mechanically, while ATH increases flame retardancy. Small amounts of MLG reduce these high filler contents and maintain the multifunctional characteristics of rubber composites. In chlorosulfonated polyethylene (CSM) + ATH, an intrinsically flame-retardant rubber was designed to achieve the highest standards such as maximum average of heat emission (MARHE) <90 kW m−2, 3 phrMLG was substituted for 15 phr CB and/or 3 phr ATH via an industrially applicable processing approach. Replacing either CB or ATH resulted in a property profile that was multifunctionally improved in terms of features such as mechanical performance, reduced sorption, and flame retardance. MLG nanocomposites are reported to show promise as an industrially utilizable route to obtain multifunctional high-performance rubbers. KW - Nanocomposites KW - Rubber KW - Multilayer graphene KW - Flame retardancy KW - Synergy KW - Nanoparticles KW - Elastomers PY - 2022 DO - https://doi.org/10.1021/acsapm.1c01469 SN - 2637-6105 VL - 4 IS - 2 SP - 1021 EP - 1034 PB - ACS Publ. CY - Washington, DC AN - OPUS4-54330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahab, M. A. A1 - Kebelmann, Katharina A1 - Schartel, Bernhard A1 - Griffiths, G. T1 - Valorization of macroalgae digestate into aromatic rich bio-oil and lipid rich microalgal biomass for enhanced algal biorefinery performance N2 - The valorization of macroalgae digestate as a secondary resource for high value chemicals and nutrients will promote the sustainability and circularity of anaerobic digestion based biorefinery. In this study, three digestates from A. nodosum C.linum and L. digitata were separated into liquid and solid fractions to investigate the production of high value added chemicals through pyrolysis using Pyrolysis Gas Chromatography Mass Spectroscopy (Py-GC/MS) while the filtered liquid fractions were tested as an alternative culture media to grow C. sorokiniana under mixotrophic conditions. The digestates showed different thermal degradation and an improvement of bio-oil profiles compared to the starter material. Pyrolyzates from raw macroalgae were characterized by a high anhydrosugar content in contrast to high aromatics observed in the case of their digestates. Toluene, benzofuran and vinylphenol, base chemicals for many industries, represented together 30–37% of the total chemicals produced during pyrolysis of the three macroalgae digestate. On the other hand, C. sorokiniana cultured on digestate-based media showed a higher lipid content with an increase in monounsaturated fatty acids and a lower poly-unsaturated fatty acid content in comparison to microalgae grown in standard tris-acetate-phosphate media. Thus, the acyl composition was shifted in a direction more suitable for biodiesel production by this process. In addition, the increase of Chemical Oxygen Demand and Volatile Fatty Acids concentration in the digestate was found to reduce ammonium toxicity. Finally, 94% of Chemical Oxygen Demand and 83% of ammonium were removed by microalgae from the digestate-based media which will reduce the pollution risk of the biorefinery. Overall, the results indicate that using macroalgae solid digestates can generate improvements in the quality of products obtained by pyrolysis and the liquid digestate can positively influence microalgae growth and its products. KW - Macroalgae KW - Anaerobic digestion KW - Aromatics KW - Microalgae culture KW - Biorefinery PY - 2022 DO - https://doi.org/10.1016/j.jclepro.2022.130925 SN - 0959-6526 VL - 341 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-54365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mund, M. A1 - Häßler, Dustin A1 - Schaumann, P. A1 - Hothan, Sascha A1 - Schartel, Bernhard T1 - Experimentelle Untersuchungen zur Dauerhaftigkeit von reaktiven Brandschutzsystemen N2 - Reaktive Brandschutzsysteme finden im baulichen Brandschutz Anwendung zur Erhöhung des Feuerwiderstands von Stahlkonstruktionen. Neben den Anforderungen an die Feuerwiderstandsdauer können damit auch Ansprüche an die Ästhetik erfüllt werden. Die profilfolgende Applikation und die geringen Trockenschichtdicken der Produkte ermöglichen es, das filigrane Erscheinungsbild von Stahlkonstruktionen aufrechtzuerhalten. Neben der thermischen Schutzwirkung muss auch die Dauerhaftigkeit der Brandschutzbeschichtung sichergestellt werden. Die Bewertungsmethoden, die auf europäischer Ebene durch das EAD 350402-00-1106 zur Verfügung stehen, zielen auf eine Nutzungsdauer von zehn Jahren ab. Prüfverfahren für einen darüber hinausgehenden Zeitraum sind nicht beschrieben. In diesem Beitrag werden experimentelle Untersuchungen zum Einfluss der Bewitterung auf das Expansionsverhalten, zur thermischen Schutzwirkung und zu den während des Aufschäumens im Brandfall stattfindenden Reaktionen vorgestellt. Die Versuche wurden an einem wasserbasierten und einem epoxidharzbasierten reaktiven Brandschutzsystem durchgeführt. Die Ergebnisse wurden im Rahmen des IGF-Forschungsvorhabens 20470 N erzielt. KW - Brandschutz KW - Reaktive Brandschutzsysteme KW - Brandversuche KW - Alterung KW - Dauerhaftigkeit PY - 2022 DO - https://doi.org/10.1002/stab.202200063 SN - 0038-9145 VL - 92 IS - 2 SP - 93 EP - 102 PB - Ernst & Sohn CY - Berlin AN - OPUS4-56346 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez Olivares, G. A1 - Battig, Alexander A1 - Goller, Sebastian M. A1 - Rockel, Daniel A1 - Ramirez Gonzáles, V. A1 - Schartel, Bernhard T1 - Imparting Fire Retardancy and Smoke Suppression to Leather during Tanning Processes N2 - Leather is considered a luxury good when used in seating and upholstery. To improve safety, flame retardancy in leather is usually achieved through various finishing processes such as spray or roller coating. These treatments require processing steps that cost time and are laborintensive. One avenue to achieving flame retardancy in leather is to add flame retardants during the tanning process. However, the influence on flame retardancy exerted by specific intumescent additives specifically added during leather tanning has yet to be investigated. This work explores the roles played by intumescent additive compounds in flame retarding leather when they are added during tanning instead of applied as a coating. Via a systematic investigation of various compound mixtures, the flame retardant effects in the condensed and the gas phases are elucidated. The results show a strong impact of melamine in the gas phase and of polyphosphates in the condensed phase. Their impact was quantified in fire and smoke analysis, showing a 14% reduction in the peak of heat release rate, strongly reduced burning lengths, and a 20% reduction in total smoke release compared to nontreated leather. These results illuminate the key role played by specific compounds in the flame retardancy of leather, particularly when they are added specifically during the tanning process instead of being applied as a coating. This method has great potential to reduce processing steps, lower costs, and improve material safety. KW - Leather KW - Fire protection KW - Intumescent additives KW - Smoke suppression PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564777 DO - https://doi.org/10.1021/acsomega.2c05633 SN - 2470-1343 VL - 7 IS - 48 SP - 44156 EP - 44169 PB - ACS AN - OPUS4-56477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Y. A1 - Schartel, Bernhard T1 - It takes two to Tango: Industrial Benchmark PU-Foams with expandable Graphite/P-Flame Retardant Combinations N2 - Polyurethane foams (PUF) are generally flammable, so they are limited in some applications due to strict fire safety requirements. In this study, three distinct industrial benchmark polyurethane foams containing synergistic combinations of expandable graphite (EG) and phosphorous flame retardants (P-FR) were investigated one by one for their fire performance and smoke behavior. This paper aims to substantiate the hypothesis that the combination of EG and P-FR used in polyurethane foams yields a top-notch composite in terms of flame retardancy and smoke behavior by meeting the demanding requirement of low maximum average heat emission (MARHE) and smoke emission in a variety of applications, like advanced materials in construction, lightweight materials for railways, and more. KW - Polyurethane foam KW - Expandable graphite KW - Phosphorus flame retardant PY - 2022 SN - 0948-3276 SN - 0022-9520 VL - 75 IS - 6 SP - 39 EP - 46 PB - Hüthig AN - OPUS4-56501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, C. A1 - Battig, Alexander A1 - Schartel, Bernhard A1 - Siegel, R. A1 - Senker, J. A1 - von der Forst, I. A1 - Unverzagt, C. A1 - Agarwal, S. A1 - Möglich, A. A1 - Greiner, A. T1 - Investigation of the Thermal Stability of Proteinase K for the Melt Processing of Poly(L‑lactide) N2 - The enzymatic degradation of aliphatic polyesters offers unique opportunities for various use cases in materials science. Although evidently desirable, the implementation of enzymes in technical applications of polyesters is generally challenging due to the thermal lability of enzymes. To prospectively overcome this intrinsic limitation, we here explored the thermal stability of proteinase K at conditions applicable for polymer melt processing, given that this hydrolytic enzyme is well established for its ability to degrade poly(L-lactide) (PLLA). Using assorted spectroscopic methods and enzymatic assays, we investigated the effects of high temperatures on the structure and specific activity of proteinase K. Whereas in solution, irreversible unfolding occurred at temperatures above 75−80 °C, in the dry, bulk state, proteinase K withstood prolonged incubation at elevated temperatures. Unexpectedly little activity loss occurred during incubation at up to 130 °C, and intermediate levels of catalytic activity were preserved at up to 150 °C. The resistance of bulk proteinase K to thermal treatment was slightly enhanced by absorption into polyacrylamide (PAM) particles. Under these conditions, after 5 min at a temperature of 200 °C, which is required for the melt processing of PLLA, proteinase K was not completely denatured but retained around 2% enzymatic activity. Our findings reveal that the thermal processing of proteinase K in the dry state is principally feasible, but equally, they also identify needs and prospects for improvement. The experimental pipeline we establish for proteinase K analysis stands to benefit efforts directed to this end. More broadly, our work sheds light on enzymatically degradable polymers and the thermal processing of enzymes, which are of increasing economical and societal relevance. KW - Enzymatic degradation KW - Poly(L‑lactide) KW - Polyesters KW - biodegradation PY - 2022 DO - https://doi.org/10.1021/acs.biomac.2c01008 SN - 1525-7797 SN - 1526-4602 VL - 23 IS - 11 SP - 4841 EP - 4850 PB - ACS Publications AN - OPUS4-56292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, I. A1 - Kebelmann, Katharina A1 - Risse, S. A1 - Dieguez-Alonso, A. A1 - Schartel, Bernhard A1 - Strecker, C. A1 - Behrendt, F. T1 - Hydroliquefaction of Two Kraft Lignins in a Semibatch Setup under Process Conditions Applicable for Large-Scale Biofuel Production N2 - Hydroliquefaction is a possible pathway to produce liquid transportation fuels from solid feedstocks like coal or biomass. Though much effort has been put into the investigation of maximizing the oil yield using expensive catalysts and pasting oils in batch setups, little is known about how to commercialize the process. This work aims at the demonstration of lignin hydroliquefaction under conditions interesting for commercial operation. The results from hydroliquefaction experiments of two different lignin types using a cheap iron-based catalyst and anthracene oil as the pasting oil in a semibatch system are presented here. Oil yields of above 50% are reached without observing coke formation. Extensive analyses of the feedstocks and product oils were performed. The process supplies high-quality oil, while differences in the decomposition path of both lignin types are observed. An high heating value of 39 400 J/g and H/C and O/C ratios of up to 1.6 and 0.1, respectively, are detected for the produced bio-oils. KW - Lignin KW - Hydroliquefaction KW - Biofuel PY - 2019 DO - https://doi.org/10.1021/acs.energyfuels.9b02572 SN - 0887-0624 SN - 1520-5029 VL - 33 IS - 11 SP - 11057 EP - 11066 PB - ACS AN - OPUS4-50102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Ma, C. A1 - Zhou, F. A1 - Hu, Y. A1 - Schartel, Bernhard T1 - A liquid phosphorous flame retardant combined with expandable graphite or melamine in flexible polyurethane foam N2 - A systematic series of flexible polyurethane foams (FPUF) with different concentrations of flame retardants, bis([dimethoxyphosphoryl]methyl) phenyl phosphate (BDMPP), and melamine (MA) or expandable graphite (EG) was prepared. The mechanical properties of the FPUFs were evaluated by a universal testing machine. The pyrolysis behaviors and the evolved gas analysis were done by thermogravimetric analysis (TGA) and TGA coupled with Fourier-transform infrared (TG-FTIR), respectively. The fire behaviors were studied by limiting oxygen index (LOI), UL 94 test for horizontal burning of cellular materials (UL 94 HBF), and cone calorimeter measurement. Scanning electronic microscopy (SEM) was used to examine the cellular structure's morphology and the postfire char residue of the FPUFs. LOI and UL 94 HBF tests of all the flame retarded samples show improved flame retardancy. BDMPP plays an essential role in the gas phase because it significantly reduces the effective heat of combustion (EHC). This study highlights the synergistic effect caused by the combination of BDMPP and EG. The measured char yield from TGA is greater than the sum of individual effects. No dripping phenomenon occurs during burning for FPUF-BDMPP-EGs, as demonstrated by the result of the UL 94 HBF test. EG performs excellently on smoke suppression during burning, as evident in the result of the cone calorimeter test. MA reduces the peak heat release rate (pHRR) significantly. The synergistic effect of the combination of BDMPP and EG as well as MA offers an approach to enhance flame retardancy and smoke suppression. KW - Bis([dimethoxyphosphoryl]methyl) phenyl phosphate KW - Expandable graphite KW - Flexible polyurethane foam KW - melamine KW - phosphorous flame retardant PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541840 DO - https://doi.org/10.1002/pat.5519 SN - 1099-1581 VL - 33 IS - 1 SP - 326 EP - 339 PB - Wiley AN - OPUS4-54184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marti, J. A1 - Schartel, Bernhard A1 - Oñate, E. T1 - Simulation of the burning and dripping cables in fire using the particle finite element method N2 - The behavior of the cable jacket in fire characterized by the tendency to melt and drip constitutes a major source of fire hazard. The reason is that the melted material may convey the flame from one point to another, expanding fire and contributing to the fire load. In this article, the capability of a new computational strategy based on the particle finite element method for simulating a bench-scale cables burning test is analyzed. The use bench-scale test has been previously used to simulate the full-scale test described in EN 50399. As the air effect is neglected, a simple combustion model is included. The samples selected are two cables consisting of a copper core and differently flame retarded thermoplastic polyurethane sheets. The key modeling parameters were determined from different literature sources as well as experimentally. During the experiment, the specimen was burned under the test set-up condition recording the process and measuring the temperature evolution by means of three thermocouples. Next, the test was reproduced numerically and compared with a real fire test. The numerical results show that the particle finite element method can accurately predict the evolution of the temperature and the melting of the jacket. KW - Dripping behavior KW - Particle finite element method KW - Cables in fire KW - Fire behavior KW - Fire simulation KW - Cable bundle PY - 2022 DO - https://doi.org/10.1177/07349041211039752 SN - 0734-9041 VL - 40 IS - 1 SP - 3 EP - 25 PB - Sage AN - OPUS4-54185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Kukofka, Tobias A1 - Klack, Patrick A1 - Ruder, J. A1 - Lin, Xuebao A1 - Schartel, Bernhard T1 - Degradation of flame retardance: A comparison of ethylene‐vinyl acetate and low‐density polyethylene cables with two different metal hydroxides N2 - The durability of flame retardancy is a challenge for cables over long lifetimes. The degradation of flame retardance is investigated in two kinds of exposures, artificial weathering and humidity. In this basic study, typical mineral flame retardants in two polymers frequently used in cable jackets are investigated to get the fundamental picture. Aluminum hydroxide (ATH) and magnesium hydroxide (MDH) are compared in ethylene‐vinyl acetate (EVA), and further in EVA and linear low‐density polyethylene (LLDPE) cables containing the same ATH. The changes in chemical structure at the surface are studied through attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR), the formation of cracks, and changes in color are investigated. The cone calorimeter and a bench scale fire testing cable module are utilized to evaluate the fire behavior of the cables. Although the flame retardancy deteriorated slightly, it survived harsh exposure conditions for 2000 h. Compared to EVA/MDH and LLDPE/ATH, the fire behavior of EVA/ATH is the least sensitive. Taken together, all of the results converge to estimate that there will be no problem with flame retardancy performance, for materials subjected to natural exposure for several years; the durability of fire retardancy is questionable for longer periods, and thus requires further investigation. KW - Durability KW - Flame retardant KW - Aluminum hydroxide (ATH) KW - Magnesium hydroxide KW - Ethylene-vinyl acetate KW - Cables KW - Weathering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519573 DO - https://doi.org/10.1002/app.50149 VL - 138 IS - 14 SP - 50149 PB - Wiley AN - OPUS4-51957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daus, Lars-Hendrik A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Mangelsdorf, R. A1 - Korzen, Manfred T1 - A chain is no stronger than its weakest link: Weathering resistance of water-based intumescent coatings for steel applications N2 - A systematic approach was used to investigate the weathering-induced degradation of a common water–based intumescent coating. In this study, the coatings are intended for humid indoor applications on steel substrates. The coating contains ammonium polyphosphate, pentaerythritol, melamine, and polyvinyl acetate. By replacing each ingredient with a less water-soluble substance, the most vulnerable substances, polyvinyl acetate and pentaerythritol, were identified. Furthermore, the weathering resistance of the system was improved by exchanging the ingredients. The coatings were stressed by artificial weathering tests and evaluated by fire tests. Thermogravimetry and Fourier-transform infrared spectroscopy were used to study the thermal decomposition. This study lays the foundation for the development of a new generation of water-based intumescent coatings. KW - Intumescence KW - Fire resistance KW - Fire protective coatings KW - Weathering KW - Thermogravimetric analyses PY - 2021 DO - https://doi.org/10.1177/0734904120961064 SN - 0734-9041 SN - 1530-8049 VL - 39 IS - 1 SP - 72 EP - 102 PB - SAGE AN - OPUS4-52015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günther, Martin A1 - Lorenzetti, A. A1 - Schartel, Bernhard T1 - Fire Phenomena of Rigid Polyurethane Foams N2 - Rigid polyurethane foams (RPUFs) typically exhibit low thermal inertia, resulting in short ignition times and rapid flame spread. In this study, the fire phenomena of RPUFs were investigated using a multi-methodological approach to gain detailed insight into the fire behaviour of pentaneand water-blown polyurethane (PUR) as well as pentane-blown polyisocyanurate Polyurethane (PIR) foams with densities ranging from 30 to 100 kg/m3. Thermophysical properties were studied using thermogravimetry (TG); flammability and fire behaviour were investigated by means of the limiting oxygen index (LOI) and a cone calorimeter. Temperature development in burning cone calorimeter specimens was monitored with thermocouples inside the foam samples and visual investigation of quenched specimens’ cross sections gave insight into the morphological changes during burning. A comprehensive investigation is presented, illuminating the processes taking place during foam combustion. Cone calorimeter tests revealed that in-depth absorption of radiation is a significant factor in estimating the time to ignition. Cross sections examined with an electron scanning microscope (SEM) revealed a pyrolysis front with an intact foam structure underneath, and temperature measurement inside burning specimens indicated that, as foam density increased, their burning behaviour shifted towards that of solid materials. The superior fire performance of PIR foams was found to be based on the cellular structure, which is retained in the residue to some extent. KW - Foam KW - Polyurethane KW - Fire behaviour KW - Flammability PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465577 DO - https://doi.org/10.3390/polym10101166 SN - 2073-4360 VL - 10 IS - 10 SP - 1166-1 EP - 1166-22 PB - MDPI AN - OPUS4-46557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Schartel, Bernhard A1 - Schoch, Rebecca A1 - Schubert, Martina T1 - Holz-Kunststoff-Verbundwerkstoffe - Wie beeinflussen Flammschutzmittel die Rauchgaszusammensetzung im Brandfall? N2 - Der steigende Einsatz von Holz-Kunststoff-Verbundwerkstoffen (Wood Plastic Composite, WPC) erfordert das Wissen um seine spezifischen Eigenschaften, insbesondere dem Brand risiko. Dabei können Flammschutzmittel die Entflammbarkeit, Wärmeabgabe und die Brandausbreitung des Materials verringern. Deshalb sind der gezielte und effiziente Einsatz und die Kenntnis über die Wirkungsweise der Flammschutzmittel im WPC für den Brandschutz von enormer Bedeutung. Dazu gehört auch die Rauchentwicklung im Brandfall. Rauch beeinflusst aufgrund seiner Toxizität und seiner Sichttrübung die Fluchtmöglichkeit der betroffenen Personen. In der Rauchkammer nach ISO 5659-2 wird die Rauchentwicklung von flachen Werkstoffproben ermittelt. Die Rauchgastoxizität bzw. die Rauchgaszusammensetzung wird mithilfe der FTIR (Fourier Transformierte Infrarot)-Spektroskopie ermittelt. Frei werdende Partikel schädigen die Atemorgane und beeinflussen damit auch die Fluchtfähigkeit von Personen im Brandfall. Aussagen zur Partikelemission können mithilfe eines an die Rauchkammer gekoppelten Partikelanalysators getroffen werden. Im Rahmen dieser Arbeit wurden verschiedene flammgeschützte WPC-Systeme hinsichtlich ihres Rauchverhaltens in der Rauchkammer untersucht. Die Ergebnisse zu emittierten toxischen Gasen, Partikeln und zur Rauchentwicklung werden vorgestellt und in Abhängigkeit von den eingesetzten Flammschutzmitteln im WPC diskutiert. KW - Rauchgase KW - Holz-Kunststoff-Verbundwerkstoffe KW - Partikel KW - Flammschutz PY - 2019 DO - https://doi.org/10.1002/bate.201900020 VL - 96 SP - 1 EP - 12 PB - Wiley AN - OPUS4-48157 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, Jens C. A1 - Battig, Alexander A1 - Zimmermann, Lisa A1 - Wagner, Martin A1 - Fischer, Jochen A1 - Schartel, Bernhard A1 - Wurm, Frederik R. T1 - Systematically controlled decomposition mechanism in phosphorus flame retardants by precise molecular architecture: P−O vs P−N N2 - Flame retardants (FR) are inevitable additives to many plastics. Halogenated organics are effective FRs but are controversially discussed due to the release of toxic gases during a fire or their persistence if landfilled. Phosphorus-containing compounds are effective alternatives to halogenated FRs and have potential lower toxicity and degradability. In addition, nitrogencontaining additives were reported to induce synergistic effects with phosphorus-based FRs. However, no systematic study of the gradual variation on a single phosphorus FR containing both P−O and P−N moieties and their comparison to the respective blends of phosphates and phosphoramides was reported. This study developed general design principles for P−O- and P−N-based FRs and will help to design effective FRs for various polymers. We synthesized a library of phosphorus FRs that only differ in their P-binding pattern from each other and studied their decomposition mechanism in epoxy resins. Systematic control over the decomposition pathways of phosphate (PO(OR)3), phosphoramidate (PO(OR)2(NHR)), phosphorodiamidate (PO(OR)(NHR)2), phosphoramide (PO(NHR)3), and their blends was identified, for example, by reducing cis-elimination and the formation of P−N-rich char with increasing nitrogen content in the P-binding sphere. Our FR epoxy resins can compete with commercial FRs in most cases, but we proved that the blending of esters and amides outperformed the single molecule amidates/diamidates due to distinctively different decomposition mechanisms acting synergistically when blended. KW - Phosphorus KW - Flame retardants KW - Epoxies KW - Mechanistic study KW - Toxicity PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481549 DO - https://doi.org/10.1021/acsapm.9b00129 SN - 2637-6105 VL - 1 IS - 5 SP - 1118 EP - 1128 PB - ACS AN - OPUS4-48154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Markwart, J. C. A1 - Wurm, F. R. A1 - Schartel, Bernhard T1 - Hyperbranched phosphorus flame retardants: multifunctional additives for epoxy resins N2 - We successfully synthesized multifunctional P-based hyperbranched polymeric flame retardants (hb-FRs) with varying oxygen-to-nitrogen (O : N) content and characterized them via 1H and 31P NMR and GPC. Their miscibility in epoxy resins (EP) and impact on glass-transition temperatures (Tg) were determined via differential scanning calorimetry (DSC). Using thermogravimetric and evolved gas Analysis (TGA, TG-FTIR), pyrolysis gas chromatography/mass spectrometry (Py-GC-MS), hot stage FTIR, flammability tests UL-94 and LOI, fire testing via cone calorimetry, residue analysis via scanning electron microscopy (SEM) and elemental analysis, detailed decomposition mechanisms and modes of action are proposed. hb-polymeric FRs have improved miscibility and thermal stability, leading to high FR performance even at low loadings. Polymeric, complex FRs increase flame retardancy, mitigate negative effects of low molecular weight variants, and can compete with commercial aromatic FRs. The results illustrate the role played by the chemical structure in flame retardancy and highlight the potential of hb-FRs as multifunctional additives. KW - Flame retardant KW - Hyperbranched PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486589 DO - https://doi.org/10.1039/c9py00737g SN - 1759-9962 SN - 1759-9954 VL - 10 IS - 31 SP - 4346 EP - 4358 PB - RSC AN - OPUS4-48658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lenz, J. A1 - Pospiech, D. A1 - Paven, M. A1 - Albach, R. W. A1 - Günther, Martin A1 - Schartel, Bernhard A1 - Voit, B. T1 - Improving the Flame Retardance of Polyisocyanurate Foams by Dibenzo[d,f][1,3,2]dioxaphosphepine 6-Oxide-Containing Additives N2 - A series of new flame retardants (FR) based on dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO) incorporating acrylates and benzoquinone were developed previously. In this study, we examine the fire behavior of the new flame retardants in polyisocyanurate (PIR) foams. The foam characteristics, thermal decomposition, and fire behavior are investigated. The fire properties of the foams containing BPPO-based derivatives were found to depend on the chemical structure of the substituents. We also compare our results to state-of-the-art non-halogenated FR such as triphenylphosphate and chemically similar phosphinate, i.e. 9,10-dihydro-9-oxa-10- phosphaphenanthrene-10-oxide (DOPO), based derivatives to discuss the role of the phosphorus oxidation state. KW - Polyisocyanurate KW - Dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide KW - Phospha-Michael addition KW - Flame retardant KW - Foams PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485590 DO - https://doi.org/10.3390/polym11081242 SN - 2073-4360 VL - 11 IS - 8 SP - Article 1242 PB - MDPI AN - OPUS4-48559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Mechanical and fire properties of multicomponent flame retardant EPDM rubbers using aluminum trihydroxide, ammonium polyphosphate, and polyaniline N2 - In this study, multicomponent flame retardant systems, consisting of Ammonium polyphosphate (APP), aluminum trihydroxide (ATH), and polyaniline (PANI), were used in ethylene propylene diene monomer (EPDM) rubber. The multicomponent system was designed to improve flame retardancy and the mechanical properties of the rubber compounds, while simultaneously reducing the amount of filler. PANI was applied at low loadings (7 phr) and combined with the phosphorous APP (21 phr) and the mineral flame retardant ATH (50 phr). A comprehensive study of six EPDM rubbers was carried out by systematically varying the fillers to explain the impact of multicomponent flame retardant systems on mechanical properties. The six EPDM materials were investigated via the UL 94, limiting oxygen index (LOI), FMVSS 302, glow wire tests, and the cone calorimeter, showing that multicomponent flame retardant systems led to improved fire performance. In cone calorimeter tests the EPDM/APP/ATH/PANI composite reduced the maximum average rate of heat emission (MARHE) to 142 kW·m-2, a value 50% lower than that for the unfilled EPDM rubber. Furthermore, the amount of phosphorus in the residues was quantified and the mode of action of the phosphorous flame retardant APP was explained. The data from the cone calorimeter were used to determine the protective layer effect of the multicomponent flame retardant systems in the EPDM compounds. KW - EPDM KW - Rubber KW - Flame retardant KW - Polyaniline KW - Aluminum trihydroxide (ATH) PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-482769 DO - https://doi.org/10.3390/ma12121932 SN - 1996-1944 VL - 12 IS - 12 SP - 1932, 1 EP - 22 PB - MDPI AN - OPUS4-48276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez-Olivares, G. A1 - Rabe, Sebastian A1 - Pérez-Chávez, R. A1 - Calderas, F. A1 - Schartel, Bernhard T1 - Industrial-waste agave fibres in flame-retarded thermoplastic starch biocomposites N2 - Flame-retarded biocomposites of thermoplastic starch and natural fibres are successfully processed according to state-of-the-art extrusion and injection moulding. Using agave fibres and henequen fibres recovered from local industrial waste is a convincing contribution to sustainability. A systematically varied set of biocomposites is investigated comprehensively, e.g. electron microscopy is used for characterizing the morphology, rheology for the melt viscosity, tensile and impact resistance for the mechanical properties, thermal analysis for the pyrolysis, UL 94 burning chamber and oxygen index for the flammability, and cone calorimeter for the fire behaviour. Achieving sufficient mechanical properties was not the goal in our pre-competitive study but may be tackled by adding compatibilizer in future. The combination of well-dispersed natural fibres, aluminium diethylphosphinate (AlPi) and a special silicone synergist (Si) is proposed as promising innovative route for V-classified biocomposites. The flame-retardancy modes of action in the gas phase (fuel dilution and flame inhibition) and in the condensed phase (charring, protective layer formation) are discussed in detail, as is the role of combining the ingredients. This work is a convincing proof of principle of how to prepare industrial-waste fibres biocomposites, to apply the synergistic combination of AlPi and Si for future flame-retarded technical polymer materials that are based on renewable resources and compostable. KW - Flame-retardant biocomposites KW - Natural fibre KW - Biopolymer KW - Sustainability KW - Industrial-waste fibres KW - Flammability PY - 2019 DO - https://doi.org/10.1016/j.compositesb.2019.107370 SN - 1359-8368 VL - 177 SP - 107370 PB - Elsevier Ltd. AN - OPUS4-48777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Humphrey, J.K. A1 - Gibson, A.G. A1 - Hörold, Andreas A1 - Trappe, Volker A1 - Gettwert, V. T1 - Assessing the structural integrity of carbon-fibre sandwich panels in fire: Bench-scale approach N2 - The fire resistance of lightweight sandwich panels (SW) with carbon fibre/epoxy skins and a poly(methacryl imide) (PMI) foam core is investigated in compression under direct application of a severe flame (heat flux=200 kW m−2). A bench-scale test procedure was used, with the sample held vertically. The epoxy decomposition temperature was quickly exceeded, with rapid flash-over and progressive core softening and decomposition. There is a change in failure mode depending on whether the load is greater or less than 50% of the unexposed failure load, or in other words if one or two skins carry the load. At high loads, failure involved both skins with a single clear linear separation across each face. There is an inflection in the failure time relationship in the ∼50% load region, corresponding to the time taken for heat to be transmitted to the rear face, along with a change in the rear skin failure mode from separation to the formation of a plastic hinge. The integrity of the carbon front face, even with the resin burnt out, and the low thermal diffusivity of the core, both play key roles in prolonging rear face integrity, something to be borne in mind for future panel design. Intumescent coatings prolong the period before failure occurs. The ratio of times to failure with and without protection is proposed as a measure of their effectiveness. Apart from insulation properties, their adhesion and stability under severe fire impact play a key role. KW - Carbon fibres KW - Sandwich KW - Structural composites KW - Fracture KW - High-temperature properties KW - Surface treatments PY - 2019 DO - https://doi.org/10.1016/j.compositesb.2018.11.077 SN - 1359-8368 VL - 164 SP - 82 EP - 89 PB - Elsevier AN - OPUS4-46908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Sypaseuth, Fanni D. A1 - Schubert, M. A1 - Schoch, R. A1 - Bastian, M. A1 - Schartel, Bernhard T1 - Routes to halogen‐free flame‐retardant polypropylene wood plastic composites N2 - Developing halogen‐free flame retardants with reasonably high efficiency, which thus function at limited loadings in polypropylene‐based wood/plastic composites (WPC), is still a challenge. Cost‐effective flame‐retarded WPC have been identified as a way to open the door to an interesting, broader spectrum of application in the building and transportation sectors. This work imparts a systematic comprehensive understanding and assessment of different basic routes to halogen‐free flame‐retarded WPC, taking into account economic and environmental considerations. Cheap, halogen‐free single‐component flame retardants and their multicomponent systems are investigated at reasonable filling grades of 20 wt%. The basic routes of promising synergistic multicomponent systems are discussed, and their potential and Limits assessed. Optimizing the consistency of fire residue; closing the surface of inorganic‐organic residual layers; the thermal stabilization and design of the residue, eg, synergistic combination of ammonium polyphosphate and expandable graphite; and the combination of different flame‐retardant mechanisms, eg, intumescence and flame inhibition, are proposed as promising routes to boost the flame‐retardant efficiency. KW - Flammability KW - Halogen‐free KW - Multicomponent systems KW - Polypropylene KW - Wood plastic composite (WPC) PY - 2019 DO - https://doi.org/10.1002/pat.4458 SN - 1099-1581 SN - 1042-7147 VL - 30 IS - 1 SP - 187 EP - 202 PB - Wiley AN - OPUS4-46909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Sánchez-Olivares, G. A1 - Pérez-Chávez, R. A1 - Schartel, Bernhard T1 - Natural keratin and coconut fibres from industrial wastes in flame retarded thermoplastic starch biocomposites N2 - Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties. KW - Biomaterials KW - Biodegradable KW - Calorimetry KW - Composites KW - Flame retardance PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472518 DO - https://doi.org/10.3390/ma12030344 SN - 1996-1944 VL - 12 IS - 3 SP - 344, 1 EP - 24 PB - MDPI AN - OPUS4-47251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Metzsch-Zilligen, E. A1 - Großhauser, M. A1 - Pfaendner, R. A1 - Schartel, Bernhard T1 - Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane N2 - The multicomponent flame retardant system of melamine polyphosphate (MPP), melamine cyanurate (MC) and aluminum diethylphosphinate (AlPi) is proposed and investigated for thermoplastic polyurethane (TPU). The synergy between those additives and the resulting superior fire performance are discussed. Systematically varied sets of flame retarded TPU with various MPP/MC/AlPi ratios were investigated in terms of fire behavior, pyrolysis products and mechanical properties. The total amount of the additives was always 30 wt.-%. Further, the influence of various AlPi concentrations was investigated. The optimal MPP:MC ratio was determined while keeping the amount of AlPi constant. The combination of 8 wt.-% MPP, 12 wt.-% MC and 10 wt.-% is proposed as the most promising halogen free flame retardant formulation for TPU, because it yielded a reduction in PHRR from 2660 kW/m2 (TPU) to 452 kW/m2 and enabled V-0 classification in the UL 94 test. Combinations of MPP and MC as well a high concentration of AlPi are beneficial for the mechanical properties e.g. tensile strength and elongation at break of the formulations and could be a strong competitor to commercial flame retarded TPUs. KW - Thermoplastic polyurethane KW - Synergy KW - Melamine cyanurate KW - Melamine polyphosphate KW - Aluminum diethylphosphinate KW - Rapid mass calorimeter PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472523 DO - https://doi.org/10.1016/j.polymertesting.2019.01.001 SN - 0142-9418 VL - 74 SP - 196 EP - 204 PB - Elsevier Ltd. AN - OPUS4-47252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Velencoso, M. M. A1 - Pollok, D. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Aromatic vs. Aliphatic Hyperbranched Polyphosphoesters as Flame Retardants in Epoxy Resins N2 - The current trend for future flame retardants (FRs) goes to novel efficient halogen-free materials, due to the ban of several halogenated FRs. Among the most promising alternatives are phosphorus-based FRs, and of those, polymeric materials with complex shape have been recently reported. Herein, we present novel halogen-free aromatic and aliphatic hyperbranched polyphosphoesters (hbPPEs), which were synthesized by olefin Metathesis polymerization and investigated them as a FR in epoxy resins. We compare their efficiency (aliphatic vs. aromatic) and further assess the differences between the monomeric compounds and the hbPPEs. The decomposition and vaporizing behavior of a compound is an important factor in its flame-retardant behavior, but also the interaction with the pyrolyzing matrix has a significant influence on the performance. Therefore, the challenge in designing a FR is to optimize the chemical structure and its decomposition pathway to the matrix, with regards to time and temperature. This behavior becomes obvious in this study, and explains the superior gas phase activity of the aliphatic FRs. KW - Phosphorus KW - Metathesis KW - Dendritic KW - Cone calorimeter KW - Fire test PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494535 DO - https://doi.org/10.3390/molecules24213901 SN - 1420-3049 VL - 24 IS - 21 SP - 3901 PB - MDPI AN - OPUS4-49453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Markwart, J. C. A1 - Wurm, F. R. A1 - Schartel, Bernhard T1 - Matrix matters: Hyperbranched flame retardants in aliphatic and aromatic epoxy resins N2 - We synthesized a library of phosphorus-based flame retardants (phosphates and phosphoramides of low and high molar mass) and investigated their behavior in two epoxy resins (one aliphatic and one aromatic). The pyrolytic and burning behavior of the two resins (via TGA, TG-FTIR, Hot stage FTIR, Py-GC/MS, PCFC, DSC, LOI, UL-94, Cone calorimeter) are analyzed and compared to the results of flame retardant (FR)-containing composites. A decomposition pathway incorporating the identified modes of action and known chemical mechanisms is proposed. The overlap of decomposition temperature (Tdec) ranges of matrix and FR determines the efficacy of the system. Low molar mass FRs strongly impact material properties like Tg but are very reactive, and high molar mass variants are more thermally stable. Varying PeO and PeN content of the FR affects decomposition, but the chemical structure of the matrix also guides FR behavior. Thus, phosphates afford lower fire load and heat release in aliphatic epoxy resins, and phosphoramides can act as additives in an aromatic matrix or a reactive FRs in aliphatic ones. The chemical structure and the structure-property relationship of both FR and matrix are central to FR performance and must be viewed not as two separate but as one codependent system. KW - Flame retardant KW - Phosphate KW - Phosphoramide KW - Epoxy resin KW - Hyperbranched polymer PY - 2019 DO - https://doi.org/10.1016/j.polymdegradstab.2019.108986 SN - 0141-3910 VL - 170 SP - 108986 PB - Elsevier Ltd. AN - OPUS4-49456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hupp, Vitus A1 - Schartel, Bernhard A1 - Flothmeier, K. A1 - Hartwig, A. T1 - Pyrolysis and flammability of phosphorus based flame retardant pressure sensitive adhesives and adhesive tapes N2 - Pressure-sensitive adhesive tapes are used in a variety of applications such as construction, aircrafts, railway vehicles, and ships, where flame retardancy is essential. Especially in these applications, phosphorus-based flame retardants are often chosen over halogenated ones due to their advantages in terms of toxicity. Although there are pressure-sensitive adhesives with phosphorus flame retardants available on the market, their flame-retardant modes of action and mechanisms are not entirely understood. This research article provides fundamental pyrolysis research of three phosphorus-based flame retardants that exhibit different mechanisms in a pressuresensitive adhesive matrix. The flame-retardants modes of action and mechanisms of a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivate, an aryl phosphate, and a self-synthesized, covalently bonded DOPO derivate (copolymerized) are investigated. The blended DOPO derivate is volatilized at rather low temperatures while the covalently bonded DOPO derivate decomposes together with the polymer matrix at the same temperature. Both DOPO derivates release PO radicals which are known for their flame inhibition. The aryl phosphate decomposes at higher temperatures, releases small amounts of aryl phosphates into the gas phase, and acts predominantly the condensed phase. The aryl phosphate acts as precursor for phosphoric acid and improves the charring of the pressure sensitive adhesive matrix. All flame retardants enhance the flammability of the adhesives depending on their individual mode of action while the covalently bonded flame retardant additionally improves the mechanical properties at elevated temperatures making it a promising future technology for pressure-sensitive adhesives. KW - Pyrolysis of flame retardant KW - Pyrolysis gas chromatography KW - Mass spectrometry KW - Phosphorus flame retardant KW - Decomposition mechanism KW - Flame retardant pressure sensitive adhesives KW - Flame retardancy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-607192 DO - https://doi.org/10.1016/j.jaap.2024.106658 SN - 0165-2370 SN - 1873-250X VL - 181 SP - 1 EP - 31 PB - Elsevier B.V. AN - OPUS4-60719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -