TY - JOUR A1 - Battig, Alexander A1 - Markwart, J. C. A1 - Wurm, F. R. A1 - Schartel, Bernhard T1 - Matrix matters: Hyperbranched flame retardants in aliphatic and aromatic epoxy resins N2 - We synthesized a library of phosphorus-based flame retardants (phosphates and phosphoramides of low and high molar mass) and investigated their behavior in two epoxy resins (one aliphatic and one aromatic). The pyrolytic and burning behavior of the two resins (via TGA, TG-FTIR, Hot stage FTIR, Py-GC/MS, PCFC, DSC, LOI, UL-94, Cone calorimeter) are analyzed and compared to the results of flame retardant (FR)-containing composites. A decomposition pathway incorporating the identified modes of action and known chemical mechanisms is proposed. The overlap of decomposition temperature (Tdec) ranges of matrix and FR determines the efficacy of the system. Low molar mass FRs strongly impact material properties like Tg but are very reactive, and high molar mass variants are more thermally stable. Varying PeO and PeN content of the FR affects decomposition, but the chemical structure of the matrix also guides FR behavior. Thus, phosphates afford lower fire load and heat release in aliphatic epoxy resins, and phosphoramides can act as additives in an aromatic matrix or a reactive FRs in aliphatic ones. The chemical structure and the structure-property relationship of both FR and matrix are central to FR performance and must be viewed not as two separate but as one codependent system. KW - Flame retardant KW - Phosphate KW - Phosphoramide KW - Epoxy resin KW - Hyperbranched polymer PY - 2019 DO - https://doi.org/10.1016/j.polymdegradstab.2019.108986 SN - 0141-3910 VL - 170 SP - 108986 PB - Elsevier Ltd. AN - OPUS4-49456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wahab, M. A. A1 - Kebelmann, Katharina A1 - Schartel, Bernhard A1 - Griffiths, G. T1 - Valorization of macroalgae digestate into aromatic rich bio-oil and lipid rich microalgal biomass for enhanced algal biorefinery performance N2 - The valorization of macroalgae digestate as a secondary resource for high value chemicals and nutrients will promote the sustainability and circularity of anaerobic digestion based biorefinery. In this study, three digestates from A. nodosum C.linum and L. digitata were separated into liquid and solid fractions to investigate the production of high value added chemicals through pyrolysis using Pyrolysis Gas Chromatography Mass Spectroscopy (Py-GC/MS) while the filtered liquid fractions were tested as an alternative culture media to grow C. sorokiniana under mixotrophic conditions. The digestates showed different thermal degradation and an improvement of bio-oil profiles compared to the starter material. Pyrolyzates from raw macroalgae were characterized by a high anhydrosugar content in contrast to high aromatics observed in the case of their digestates. Toluene, benzofuran and vinylphenol, base chemicals for many industries, represented together 30–37% of the total chemicals produced during pyrolysis of the three macroalgae digestate. On the other hand, C. sorokiniana cultured on digestate-based media showed a higher lipid content with an increase in monounsaturated fatty acids and a lower poly-unsaturated fatty acid content in comparison to microalgae grown in standard tris-acetate-phosphate media. Thus, the acyl composition was shifted in a direction more suitable for biodiesel production by this process. In addition, the increase of Chemical Oxygen Demand and Volatile Fatty Acids concentration in the digestate was found to reduce ammonium toxicity. Finally, 94% of Chemical Oxygen Demand and 83% of ammonium were removed by microalgae from the digestate-based media which will reduce the pollution risk of the biorefinery. Overall, the results indicate that using macroalgae solid digestates can generate improvements in the quality of products obtained by pyrolysis and the liquid digestate can positively influence microalgae growth and its products. KW - Macroalgae KW - Anaerobic digestion KW - Aromatics KW - Microalgae culture KW - Biorefinery PY - 2022 DO - https://doi.org/10.1016/j.jclepro.2022.130925 SN - 0959-6526 VL - 341 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-54365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marti, J. A1 - Schartel, Bernhard A1 - Oñate, E. T1 - Simulation of the burning and dripping cables in fire using the particle finite element method N2 - The behavior of the cable jacket in fire characterized by the tendency to melt and drip constitutes a major source of fire hazard. The reason is that the melted material may convey the flame from one point to another, expanding fire and contributing to the fire load. In this article, the capability of a new computational strategy based on the particle finite element method for simulating a bench-scale cables burning test is analyzed. The use bench-scale test has been previously used to simulate the full-scale test described in EN 50399. As the air effect is neglected, a simple combustion model is included. The samples selected are two cables consisting of a copper core and differently flame retarded thermoplastic polyurethane sheets. The key modeling parameters were determined from different literature sources as well as experimentally. During the experiment, the specimen was burned under the test set-up condition recording the process and measuring the temperature evolution by means of three thermocouples. Next, the test was reproduced numerically and compared with a real fire test. The numerical results show that the particle finite element method can accurately predict the evolution of the temperature and the melting of the jacket. KW - Dripping behavior KW - Particle finite element method KW - Cables in fire KW - Fire behavior KW - Fire simulation KW - Cable bundle PY - 2022 DO - https://doi.org/10.1177/07349041211039752 SN - 0734-9041 VL - 40 IS - 1 SP - 3 EP - 25 PB - Sage AN - OPUS4-54185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Sypaseuth, Fanni D. A1 - Schubert, M. A1 - Schoch, R. A1 - Bastian, M. A1 - Schartel, Bernhard T1 - Routes to halogen‐free flame‐retardant polypropylene wood plastic composites N2 - Developing halogen‐free flame retardants with reasonably high efficiency, which thus function at limited loadings in polypropylene‐based wood/plastic composites (WPC), is still a challenge. Cost‐effective flame‐retarded WPC have been identified as a way to open the door to an interesting, broader spectrum of application in the building and transportation sectors. This work imparts a systematic comprehensive understanding and assessment of different basic routes to halogen‐free flame‐retarded WPC, taking into account economic and environmental considerations. Cheap, halogen‐free single‐component flame retardants and their multicomponent systems are investigated at reasonable filling grades of 20 wt%. The basic routes of promising synergistic multicomponent systems are discussed, and their potential and Limits assessed. Optimizing the consistency of fire residue; closing the surface of inorganic‐organic residual layers; the thermal stabilization and design of the residue, eg, synergistic combination of ammonium polyphosphate and expandable graphite; and the combination of different flame‐retardant mechanisms, eg, intumescence and flame inhibition, are proposed as promising routes to boost the flame‐retardant efficiency. KW - Flammability KW - Halogen‐free KW - Multicomponent systems KW - Polypropylene KW - Wood plastic composite (WPC) PY - 2019 DO - https://doi.org/10.1002/pat.4458 SN - 1099-1581 SN - 1042-7147 VL - 30 IS - 1 SP - 187 EP - 202 PB - Wiley AN - OPUS4-46909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Watolla, Marie-Bernadette A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Rickard, W.D.A. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - Intumescent geopolymer-bound coatings for fire protection of steel N2 - The passive fire protection of steel structures and other load-bearing components will continue to gain importance in future years. In the present contribution, novel intumescent aluminosilicate (geopolymer-bound) composites are proposed as fire-protective coatings on steel. Steel plates coated with these materials were exposed to the standard temperature-time curve as defined in ISO 834 – 1:1999. The coatings partially foamed during curing and expanded further during thermal exposure, demonstrating their intumescent characteristic.Thermogravimetryandoscillatory rheometry determined that the intumescent behavior is attributed to a transition to a viscous state (loss factor > 1) in the temperature range of major water release, differing from conventional geopolymers. XRD and SEM images showed that the coatings had characteristics of ceramic or glass-ceramic foams after fire resistance testing, suggesting superior performance under challenging conditions. The thickness of the coatings influenced their foaming and intumescent behavior and thus the time for the coated steel plates to reach 500 °C. A number of additives were also studied with the best performance obtained from samples containing sodium tetraborate.Acoating of just 6mmwas able to delay the time it takes for a steel substrate to reach 500 °C to more than 30 minutes. KW - Geopolymers KW - Fire protection KW - Intumescence KW - Coatings KW - Fire resistance PY - 2017 UR - https://www.ceramic-science.com/articles/all-articles.html?article_id=100558 DO - https://doi.org/10.4416/JCST2017-00035 VL - 8 IS - 3 (Topical issue: Geopolymers) SP - 351 EP - 364 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-42139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, S. A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Qian, Lijun A1 - Dong, Y. A1 - Schartel, Bernhard T1 - Enhanced flame-retardant effect of montmorillonite/phosphaphenanthrene compound in an epoxy thermoset N2 - A phosphaphenanthrene and triazinetrione group containing flame retardant (TAD) is combined with organically modified montmorillonite (OMMT) in epoxy resin thermosets (EP) to improve the performance of the flame-retardant system. When only 1 wt% OMMT/4 wt% TAD is introduced into the EP, the limited oxygen index (LOI) rises from 26% to 36.9% and a V-0 rating is achieved in a UL 94 test. The decomposition and pyrolysis products in the gas phase and condensed phase were characterized using thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR). The influence on the decomposition of EP, such as the increase in char yield, is limited with the incorporation of OMMT; a large amount of the phosphorus is released into the gas phase. The flame-retardant effect evaluation based on cone calorimeter data testified that OMMT improves the protective-barrier effect of the fire residue of OMMT/TAD/EP on the macroscopic scale, while TAD mainly causes flame inhibition. The fire residues showed a corresponding macroscopic appearance (digital photo) and microstructure (scanning electron microscope [SEM] results). The protective barrier effect of OMMT and the flame-inhibition effect of TAD combined to exert a superior flame-retardant effect, resulting in sufficient flame-retardant performance of OMMT/TAD/EP KW - Flame retardant KW - Nanocomposite KW - DOPO KW - Thermoset KW - Epoxy resin KW - TG-FTIR PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-388865 DO - https://doi.org/10.1039/c6ra25070j SN - 2046-2069 VL - 7 IS - 2 SP - 720 EP - 728 AN - OPUS4-38886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppl, T. A1 - Brehme, Sven A1 - Wolff-Fabris, F. A1 - Altstädt, V. A1 - Schartel, Bernhard A1 - Döring, M. T1 - Structure-property relationships of halogen-free flame-retarded poly(butylene terephthalate) and glass fiber reinforced PBT N2 - Flame retardancy for thermoplastics is a challenging task where chemists and engineers work together to find solutions to improve the burning behavior without strongly influencing other key properties of the material. In this work, the halogen-free additives aluminum diethylphosphinate (AlPi-Et) and a mixture of aluminum phosphinate (AlPi) and resorcinol-bis(di-2,6-xylyl phosphate) (AlPi-H + RXP) are employed in neat and reinforced poly(butylene terephthalate) (PBT), and the morphology, mechanical performance, rheological behavior, and flammability of these materials are compared. Both additives show submicron dimensions but differ in terms of particle and agglomerate sizes und shapes. The overall mechanical performance of the PBT flame-retarded with AlPi-Et is lower than that with AlPi-H-RXP, due to the presence of larger agglomerates. Moreover, the flow behavior of the AlPi-Et/PBT materials is dramatically changed as the larger rod-like primary particles build a percolation threshold. In terms of flammability, both additives perform similar in the UL 94 test and under forced-flaming combustion. Nevertheless, AlPi-Et performs better than AlPi-H + RXP in the LOI test. The concentration required to achieve acceptable flame retardancy ranges above 15 wt %. KW - Polyesters KW - Fibers KW - Morphology KW - Structure–property relations KW - Flame retardance PY - 2012 DO - https://doi.org/10.1002/app.34910 SN - 0021-8995 SN - 1097-4628 VL - 124 IS - 1 SP - 9 EP - 18 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-25253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard T1 - Effective halogen-free flame retardancy for a monocomponent polyfunctional epoxy using an oligomeric organophosphorus compound N2 - Oligomeric organo-phosphorus flame retardants are proposed for a monocomponent polyfunctional epoxy resin system (RTM6) without significantly deteriorating the overall performance of the resulting material. KW - DOPO KW - Epoxy resin KW - Fire retardancy KW - LOI PY - 2006 DO - https://doi.org/10.1007/s10853-006-1079-3 SN - 0022-2461 SN - 1573-4803 VL - 41 IS - 24 SP - 8347 EP - 8351 PB - Springer Science + Business Media B.V. CY - New York, USA AN - OPUS4-14112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Balabanovich, Aliaksandr A1 - Knoll, Uta A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Novel Phosphorus-containing Hardeners with Tailored Chemical Structures for Epoxy Resins: Synthesis and Cured Resin Properties N2 - A comparative evaluation of systematically tailored chemical structures of various phosphorus-containing aminic hardeners for epoxy resins was carried out. In particular, the effect of the oxidation state of the phosphorus in the hardener molecule on the curing behavior, the mechanical, thermomechanical, and hot-wet properties of a cured bifunctional bisphenol-A based thermoset is discussed. Particular attention is paid to the comparative pyrolysis of neat cured epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (with a phosphorus content of about 2.6 wt %) and of the fire behavior of their corresponding carbon fiber-reinforced composites. Comparatively faster curing thermosetting system with an enhanced flame retardancy and adequate processing behavior can be formulated by taking advantage of the higher reactivity of the phosphorus-modified hardeners. For example, a combination of the high reactivity and of induced secondary crosslinking reactions leads to a comparatively high Tg when curing the epoxy using a substoichiometric amount of the phosphinate-based hardener. The overall mechanical performance of the materials cured with the phosphorus-containing hardeners is comparable to that of a 4,4-DDS-cured reference system. While the various phosphorus-containing hardeners in general provide the epoxy-based matrix with enhanced flame retardancy properties, it is the flame inhibition in the gas phase especially that determines the improvement in fire retardancy of carbon fiber-reinforced composites. In summary, the present study provides an important contribution towards developing a better understanding of the potential use of such phosphorus-containing compounds to provide the composite matrix with sufficient flame retardancy while simultaneously maintaining its overall mechanical performance on a suitable level. KW - Flame retardance KW - Organo-phosphorus compounds KW - Fracture toughness PY - 2007 SN - 0021-8995 SN - 1097-4628 VL - 105 IS - 5 SP - 2744 EP - 2759 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-15071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard A1 - Knoll, Uta A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. T1 - Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites N2 - A systematic and comparative evaluation of the pyrolysis of halogen-free flame-retarded epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (phosphorus contents around 2.6 wt.%) and the fire behaviour of their carbon fibre composites is presented. Decomposition pathways are proposed based on the thermal analysis (TG), TG coupled with evolved gas analysis (TG-FTIR), kinetics and analysis of the residue with FTIR and XPS. All organophosphorus-modified hardeners containing phenoxy groups lead to a reduced decomposition temperature and mass loss step for the main decomposition of the cured epoxy resin. With increasing oxidation state of the phosphorus the thermally stable residue increases, whereas the release of phosphorus-containing volatiles decreases. The flammability of the composites was investigated with LOI and UL 94 and the fire behaviour for forced-flaming conditions with cone calorimeter tests performed using different irradiations. The flame retardancy mechanisms are discussed. With increasing oxidation state of the phosphorus additional charring is observed, whereas the flame inhibition, which plays the more important role for the performance of the composites, decreases. The processing and the mechanical performance (delamination resistance, flexural properties and interlaminar bonding strength) of the fibre-reinforced composites containing phosphorus were maintained at a high level and, in some cases, even improved. The potential for optimising flame retardancy while maintaining mechanical properties is highlighted in this study. KW - Fire retardant KW - Composites KW - Organophosphorus-containing epoxy resin PY - 2006 DO - https://doi.org/10.1016/j.polymer.2006.10.022 SN - 0032-3861 SN - 1873-2291 VL - 47 IS - 26 SP - 8495 EP - 8508 PB - Springer CY - Berlin AN - OPUS4-14054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Balabanovich, Aliaksandr A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. T1 - Pyrolysis of Epoxy Resins and Fire Behavior of Epoxy Resin Composites Flame-Retarded with 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide Additives N2 - The pyrolysis of an epoxy resin and the fire behavior of corresponding carbon fiber-reinforced composites, both flame-retarded with either 10-ethyl-9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide or 1,3,5-tris[2-(9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide-10-)ethyl]1, 3,5-triazine-2,4,6(1H,3H,5H)-trione, are investigated. The different fire retardancy mechanisms are discussed, and their influence on the fire properties assessed, in particular for flammability (limiting oxygen index, UL 94) and developing fires (cone calorimeter with different external heat fluxes of 35, 50, and 70 kW m-2). Adding the flame retardants containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide affects the fire behavior by both condensed phase and gas phase mechanisms. Interactions between the additives and the epoxy resin result in a change in the decomposition pathways and an increased char formation. The release of phosphorous products results in significant flame inhibition. The fire properties achieved are thus interesting with respect to industrial exploration. KW - Flame retardance KW - Thermosets KW - Composites KW - Thermogravimetric analysis (TGA) KW - Pyrolysis KW - High performance polymers KW - Epoxy resin PY - 2007 SN - 0021-8995 SN - 1097-4628 VL - 104 IS - 4 SP - 2260 EP - 2269 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-14573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Beck, Uwe A1 - Bahr, Horst A1 - Hertwig, Andreas A1 - Knoll, Uta A1 - Weise, Matthias T1 - Sub-micrometre coatings as an infrared mirror: a new route to flame retardancy N2 - Most of the polymeric materials used are easy to ignite and show extensive flame spread along their surfaces. Apart from extensive heat release rates, their short time to ignition (tig), in particular, is a key fire hazard. Preventing ignition eliminates fire hazards completely. Protection layers that shift tig by more than an order of magnitude are powerful flame retardancy approaches presenting an alternative to the usual flame retardancy concepts. Coatings are proposed that consist of a three-layer system to ensure adhesion to the substrate, acting as an infrared (IR) mirror and protecting against oxidation. The IR-mirror layer stack is realised by physical vapour deposition in the sub-micrometre (<1 µm) range, reducing heat absorption by up to an order of magnitude. Not only is the ease of ignition diminished (tig is increased by several minutes), the flame spread and fire growth indices are also remarkably reduced to as little as 1/10 of the values of the uncoated polymers open for further optimization. Sub-micrometre thin IR-mirror coatings yielding surface absorptivity <0.1 are proposed as a novel and innovative flame retardancy approach. KW - Coating KW - Fire protection KW - Physical vapour deposition (PVD) KW - IR mirror KW - Ignition PY - 2012 DO - https://doi.org/10.1002/fam.1122 SN - 0308-0501 SN - 1099-1018 VL - 36 IS - 8 SP - 671 EP - 677 PB - Heyden CY - London AN - OPUS4-27210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard T1 - Phosphorus-based flame retardancy mechanisms - Old hat or a starting point for future development? N2 - Different kinds of additive and reactive flame retardants containing phosphorus are increasingly successful as halogen-free alternatives for various polymeric materials and applications. Phosphorus can act in the condensed phase by enhancing charring, yielding intumescence, or through inorganic glass formation; and in the gas phase through flame inhibition. Occurrence and efficiency depend, not only on the flame retardant itself, but also on its interaction with pyrolysing polymeric material and additives. Flame retardancy is sensitive to modification of the flame retardant, the use of synergists/adjuvants, and changes to the polymeric material. A detailed understanding facilitates the launch of tailored and targeted development. KW - Fire retardancy KW - Red phosphorus KW - Phosphate KW - Phosphonate KW - Phosphinate KW - Phosphine oxide KW - Flame inhibition KW - Charring KW - Intumescence PY - 2010 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-220368 DO - https://doi.org/10.3390/ma3104710 SN - 1996-1944 VL - 3 IS - 10 SP - 4710 EP - 4745 PB - MDPI CY - Basel AN - OPUS4-22036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Chuenban, Yuttapong A1 - Schartel, Bernhard T1 - Exploring the Modes of Action of Phosphorus-Based Flame Retardants in Polymeric Systems N2 - Phosphorus-based flame retardants were incorporated into different, easily preparable matrices, such as polymeric thermoset resins and paraffin as a proposed model for polyolefins and investigated for their flame retardancy performance. The favored mode of action of each flame retardant was identified in each respective system and at each respective concentration. Thermogravimetric analysis was used in combination with infrared spectroscopy of the evolved gas to determine the pyrolysis behavior, residue formation and the release of phosphorus species. Forced flaming tests in the cone calorimeter provided insight into burning behavior and macroscopic residue effects. The results were put into relation to the phosphorus content to reveal correlations between phosphorus concentration in the gas phase and flame inhibition performance, as well as phosphorus concentration in the residue and condensed phase activity. Total heat evolved (fire load) and peak heat release rate were calculated based on changes in the effective heat of combustion and residue, and then compared with the measured values to address the modes of action of the flame retardants quantitatively. The quantification of flame inhibition, charring, and the protective layer effect measure the non-linear flame retardancy effects as functions of the phosphorus concentration. Overall, this screening approach using easily preparable polymer systems provides great insight into the effect of phosphorus in different flame retarded polymers, with regard to polymer structure, phosphorus concentration, and phosphorus species. KW - Flame retardants KW - Flame inhibition KW - Cone calorimeter KW - Aluminum diethyl phosphinate KW - Polyester KW - PMMA KW - Epoxy resin KW - Red phosphorus KW - BDP PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-402731 DO - https://doi.org/10.3390/ma10050455 SN - 1996-1944 VL - 10 IS - 5 SP - 455, 1 EP - 455, 23 PB - MDPI AN - OPUS4-40273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matzen, Melissa A1 - Kandola, B. A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Influence of flame retardants on the melt dripping behaviour of thermoplastic polymers N2 - Melt flow and dripping of the pyrolysing polymer melt can be both a benefit and a detriment during a fire. In several small-scale fire tests addressing the ignition of a defined specimen with a small ignition source, well-adjusted melt flow and dripping are usually beneficial to pass the test. The presence of flame retardants often changes the melt viscosity crucially. The influence of certain flame retardants on the dripping behaviour of four commercial polymers, poly(butylene terephthalate) (PBT), polypropylene (PP), polypropylene modified with ethylene-propylene rubber (PP-EP) and polyamide 6 (PA 6), is analysed based on an experimental monitoring of the mass loss due to melt dripping, drop size and drop temperature as a function of the furnace temperature applied to a rod-shaped specimen. Investigating the thermal transition (DSC), thermal and thermo-oxidative decomposition, as well as the viscosity of the polymer and collected drops completes the investigation. Different mechanisms of the flame retardants are associated with their influence on the dripping behaviour in the UL 94 test. Reduction in decomposition temperature and changed viscosity play a major role. A flow limit in flame-retarded PBT, enhanced decomposition of flame-retarded PP and PP-EP and the promotion of dripping in PA 6 are the salient features discussed. KW - Fire retardant KW - Viscosity KW - Melt dripping KW - Reaction-to-small-flame KW - UL 94 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-338941 DO - https://doi.org/10.3390/ma8095267 SN - 1996-1944 VL - 8 IS - 9 SP - 5621 EP - 5646 PB - MDPI CY - Basel AN - OPUS4-33894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Dripping and decomposition under fire: Melamine cyanurate vs. glass fibres in polyamide 6 N2 - Manipulating the melt dripping of thermoplastics makes a fire scenario more or less dangerous. Yet, a detailed understanding of this phenomenon has remained a question mark in studies of the flammability of plastics. In this work, the individual and collective impacts of additives on the dripping behaviour of polyamide 6 (PA6) were studied. A set of materials compounded with melamine cyanurate (MCA) and glass fibre (GF) was investigated. Under UL 94 vertical test conditions, the dripping during first and second ignition was quantified and investigated in detail. The number, size and temperature of the drops were addressed, and the materials and their drops evaluated with respect to such aspects as their averaged molecular weight, thermal decomposition and rheological properties. PA6 with V-2 classification improved to V-0 with the addition of MCA, and achieved HB in the presence of GF. PA6/GF/MCA achieved V-2. Non-flaming drops of PA6/MCA consisted of oligomeric fragments. Flaming drops of PA6/GF showed a more pronounced decomposition of PA6 and an increased GF content. The dripping behaviour of PA6/GF/MCA can be understood as a combination of the influence of both additives. The results showed nicely that dripping under fire is neither a straightforward material property nor a simple additive influence, but the complex response of the material influenced by the interaction and competition of different phenomena. KW - Dripping KW - UL 94 KW - Polyamide 6 KW - Melamine cyanurate KW - Glass fibre KW - Flame retardant PY - 2020 DO - https://doi.org/10.1016/j.polymdegradstab.2019.109048 SN - 0141-3910 VL - 171 SP - 109048 PB - Elsevier Ltd. AN - OPUS4-50239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Bettina A1 - Wartig, K.-A. A1 - Mülhaupt, R. A1 - Schartel, Bernhard T1 - Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene N2 - Thermally reduced graphite oxide (TRGO), containing only four single carbon layers on average, was combined with ammonium polyphosphate (APP) and magnesium hydroxide (MH), respectively, in polypropylene (PP). The nanoparticle's influence on different flame-retarding systems and possible synergisms in pyrolysis, reaction to small flame, fire behavior and mechanical properties were determined. TRGO has a positive effect on the yield stress, which is decreased by both flame-retardants and acts as a synergist with regard to Young's modulus. The applicability and effects of TRGO as an adjuvant in combination with conventional flame-retardants depends strongly on the particular flame-retardancy mechanism. In the intumescent system, even small concentrations of TRGO change the viscosity of the pyrolysing melt crucially. In case of oxygen index (OI) and UL 94 test, the addition of increasing amounts of TRGO to PP/APP had a negative impact on the oxygen index and the UL 94 classification. Nevertheless, systems with only low amounts (≤1 wt%) of TRGO achieved V-0 classification in the UL 94 test and high oxygen indices (>31 vol%). TRGO strengthens the residue structure of MH and therefore functions as a strong synergist in terms of OI and UL 94 classification (from HB to V-0). KW - Graphene KW - Intumescence KW - Ammonium polyphosphate KW - Magnesium hydroxide KW - Synergy KW - Polypropylene PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-320685 DO - https://doi.org/10.3390/polym6112875 SN - 2073-4360 VL - 6 IS - 11 SP - 2875 EP - 2895 PB - MDPI CY - Basel AN - OPUS4-32068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pawlowski, Kristin A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends N2 - The influence of nano-dispersed 5 wt.% boehmite (AlOOH) and 5 wt.% AlOOH combined with bisphenol A bis(diphenyl phosphate) (BDP) in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene (PC/ABS) + poly(tetrafluoroethylene) (PTFE), and 1 wt.% AlOOH with and without BDP, resorcinol bis(diphenyl phosphate) (RDP), and triphenyl phosphate (TPP), on PC/ABS + PTFE has been investigated. Possible flame retardancy mechanisms are revealed. Thermogravimetry (TG) and evolved gas analysis (TG-FTIR) are used to study pyrolysis, a cone calorimeter applying different external heat fluxes is used to investigate fire behaviour, and LOI and UL 94 are used to investigate flammability. Fire residues were investigated using ATR-FTIR. Adding 5 wt.% AlOOH decreases the peak heat release rate, as also has been reported for polymer nanocomposites with other layered structures. AlOOH releases water, and adding 5 wt.% AlOOH crucially influences thermal decomposition by enhancing the hydrolysis of PC and of BDP. For PC/ABS + PTFE + BDP + 5 wt.% AlOOH, the formation of AlPO4, for instance, results in antagonistic effects on the charring of PC + BDP, whereas synergy is observed in LOI. When only 1 wt.% AlOOH is added to the PC/ABS + PTFE with and without BDP, RDP and TPP, respectively, no significant influence is observed on thermal decomposition, UL 94, LOI or performance in the cone calorimeter. KW - Aryl phosphates KW - Boehmite KW - PC/ABS KW - Flammability KW - Nanocomposites KW - Flame retardant PY - 2008 DO - https://doi.org/10.1016/j.polymdegradstab.2008.01.002 SN - 0141-3910 SN - 1873-2321 VL - 93 IS - 3 SP - 657 EP - 667 PB - Applied Science Publ. CY - London AN - OPUS4-17121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pawlowski, Kristin A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbonate/acrylonitrile-butadiene-styrene blends N2 - The flame retardancy mechanisms of three aryl phosphates, triphenyl phosphate (TPP), resorcinol bis(diphenyl phosphate) (RDP) and bisphenol A bis(diphenyl phosphate) (BDP), in a polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) blend are investigated and compared. Further, the influence of polytetrafluorethylene (PTFE) on viscosity and thermal decomposition is discussed in the systems PC/ABS and PC/ABS + BDP. Mechanisms are proposed based on the results of various methods. Thermogravimetric analysis, Fourier transform infrared spectroscopy and kinetics are used to study the pyrolysis. The fire behaviour is studied by means of cone calorimeter measurements at different heat fluxes and the flammability is specified by limiting oxygen index (LOI) and UL 94. Rheology measurements are used to illuminate the changed dripping behaviour due to PTFE. TPP shows only a gas phase action. RDP shows mainly a gas phase action and some condensed phase action. BDP shows a crucial condensed phase action in addition to a gas phase action. TPP and RDP are somewhat superior in terms of flammability (LOI), whereas BDP shows superior performance in forced flaming combustion (cone calorimeter). Synergistic effects between PTFE and BDP are found. KW - Aryl phosphates KW - PC/ABS KW - Flame retardant KW - Pyrolysis KW - Flammability KW - TG-FTIR PY - 2007 DO - https://doi.org/10.1002/pi.2290 SN - 0959-8103 SN - 1097-0126 SN - 0007-1641 VL - 56 IS - 11 SP - 1404 EP - 1414 PB - Wiley InterScience CY - Chichester, West Sussex AN - OPUS4-15857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, I. A1 - Kebelmann, Katharina A1 - Risse, S. A1 - Dieguez-Alonso, A. A1 - Schartel, Bernhard A1 - Strecker, C. A1 - Behrendt, F. T1 - Hydroliquefaction of Two Kraft Lignins in a Semibatch Setup under Process Conditions Applicable for Large-Scale Biofuel Production N2 - Hydroliquefaction is a possible pathway to produce liquid transportation fuels from solid feedstocks like coal or biomass. Though much effort has been put into the investigation of maximizing the oil yield using expensive catalysts and pasting oils in batch setups, little is known about how to commercialize the process. This work aims at the demonstration of lignin hydroliquefaction under conditions interesting for commercial operation. The results from hydroliquefaction experiments of two different lignin types using a cheap iron-based catalyst and anthracene oil as the pasting oil in a semibatch system are presented here. Oil yields of above 50% are reached without observing coke formation. Extensive analyses of the feedstocks and product oils were performed. The process supplies high-quality oil, while differences in the decomposition path of both lignin types are observed. An high heating value of 39 400 J/g and H/C and O/C ratios of up to 1.6 and 0.1, respectively, are detected for the produced bio-oils. KW - Lignin KW - Hydroliquefaction KW - Biofuel PY - 2019 DO - https://doi.org/10.1021/acs.energyfuels.9b02572 SN - 0887-0624 SN - 1520-5029 VL - 33 IS - 11 SP - 11057 EP - 11066 PB - ACS AN - OPUS4-50102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hofmann, D. A1 - Wartig, K.-A. A1 - Thomann, R. A1 - Dittrich, Bettina A1 - Schartel, Bernhard A1 - Mülhaupt, R. T1 - Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene N2 - Functionalized graphene nanosheets TRGO and MLG 250, prepared from thermally reduced graphite oxide, represent attractive carbon additives for improving the performance of flame retardant polypropylene (PP-FR). The influence of carbon nanofiller type and content on morphology, thermal, mechanical, and electrical properties as well as the fire behavior of melt-extruded PP-FR is investigated. In contrast to conventional nano- and micron-sized carbon fillers such as expanded graphite (EG 40), nano-scaled carbon black (CB), and multiwall carbon nanotubes (CNT), only TRGO and MLG 250 afford uniform dispersion combined with simultaneously improved stiffness (+80%), electrical conductivity (3 × 10-5 S · cm-1) and enhanced flame retardancy of PP-FR, as expressed by lower peak heat release rate (-76%). KW - Extrusion KW - Flame retardance KW - Graphene KW - Nanocomposite KW - Polypropylene PY - 2013 DO - https://doi.org/10.1002/mame.201200433 SN - 1438-7492 SN - 1439-2054 VL - 298 IS - 12 SP - 1322 EP - 1334 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Flame Retardancy Mechanisms of Aluminium Phosphinate in Combination with Melamine Cyanurate in Glass-Fibre-Reinforced Poly(1,4-butylene terephthalate) N2 - The flame retardancy mechanisms of aluminium diethylphosphinate (AlPi) and its combination with melamine cyanurate (MC) in glass-fibre-reinforced poly(butylene terephthalate) (PBT/GF) were analysed using TGA including evolved gas analysis (TGA-FTIR), cone calorimeter measurements using various irradiations, flammability tests (limited oxygen index, LOI, UL 94) and chemical analyses of residues (FTIR, SEM/EDX). AlPi decomposed mainly through the formation of diethylphosphinic acid and aluminium phosphate and influenced the decomposition of the PBT only slightly. AlPi acted mainly through flame inhibition. A halogen-free V-0 PBT/GF material was achieved with a LOI of 44%. Additional charring influenced the flammability. MC decomposed independently of the polymer and showed some fuel dilution effects. KW - Flame retardance KW - Metal phosphinate KW - Polyester KW - Pyrolysis KW - Thermogravimetric analysis PY - 2008 DO - https://doi.org/10.1002/mame.200700330 SN - 1438-7492 SN - 1439-2054 VL - 293 IS - 3 SP - 206 EP - 217 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-17122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Dittrich, Bettina A1 - Farooq, Muhammad A1 - Kerling, S. A1 - Wartig, K.-A. A1 - Hofmann, D. A1 - Huth, Christian A1 - Okolieocha, C. A1 - Altstädt, V. A1 - Schönhals, Andreas A1 - Schartel, Bernhard T1 - Carbon-based nanofillers/poly(butylene terephthalate): thermal, dielectric, electrical and rheological properties N2 - The influence of distinct carbon based nanofillers: expanded graphite (EG), conducting carbon black (CB), thermally reduced graphene oxide (TRGO) and multi-walled carbon nanotubes (CNT) on the thermal, dielectric, electrical and rheological properties of polybutylene terephthalate (PBT) was examined. The glass transition temperature (Tg) of PBT nanocomposites is independent of the filler type and content. The carbon particles act as nucleation agents and significantly affect the melting temperature (Tm), the crystallization temperature (Tc) and the degree of crystallinity of PBT composites. PBT composites with EG show insulating behaviour over the tested concentration range of 0.5 to 2 wt.-% and hardly changed rheological behaviour. CB, CNT and TRGO induce electrical conductivity to their particular PBT composites by forming a conducting particle network within the polymer matrix. CNT reached the percolation threshold at the lowest concentration (<0.5 wt.-%), followed by TRGO (<1 wt.-%) and CB (<2 wt.-%). With the formation of a particle network, the flow behaviour of composites with CB, CNT and TRGO is affected, i.e., a flow limit occurs and the melt viscosity increases. The degree of influence of the carbon nanofillers on the rheological properties of PBT composites follows the same order as for electrical conductivity. Electrical and rheological results suggest an influence attributed to the particle dispersion, which is proposed to follow the order of EG<< CB13% and achieving V-1 behaviour) of the epoxy resin and composites. Under forced flaming only the flame inhibition of the additive compound 1 acts sufficiently. Lastly, the superior key mechanical properties of the epoxy resin and composite based on 2 are sketched. KW - Decomposition KW - DOPO KW - Flame retardancy KW - Composites KW - Thermosets PY - 2008 DO - https://doi.org/10.1016/j.eurpolymj.2008.01.017 SN - 0014-3057 SN - 1873-1945 VL - 44 IS - 3 SP - 704 EP - 715 PB - Elsevier CY - Oxford AN - OPUS4-16708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard T1 - Novel phosphorus-modified polysulfone as a combined flame retardant and toughness modifier for epoxy resins N2 - A novel phosphorus-modified polysulfone (P-PSu) was employed as a combined toughness modifier and a source of flame retardancy for a DGEBA/DDS thermosetting system. In comparison to the results of a commercially available polysulfone (PSu), commonly used as a toughness modifier, the chemorheological changes during curing measured by means of temperature-modulated DSC revealed an earlier occurrence of mobility restrictions in the P-PSu-modified epoxy. A higher viscosity and secondary epoxy-modifier reactions induced a sooner vitrification of the reacting mixture; effects that effectively prevented any phase separation and morphology development in the resulting material during cure. Thus, only about a 20% increase in fracture toughness was observed in the epoxy modified with 20 wt.% of P-PSu, cured under standard conditions at 180 °C for 2 h. Blends of the phosphorus-modified and the standard polysulfone (PSu) were also prepared in various mixing ratios and were used to modify the same thermosetting system. Again, no evidence for phase separation of the P-PSu was found in the epoxy modified with the P-PSu/PSu blends cured under the selected experimental conditions. The particular microstructures formed upon curing these novel materials are attributed to a separation of PSu from a miscible P-PSu–epoxy mixture. Nevertheless, the blends of P-PSu/PSu were found to be effective toughness/flame retardancy enhancers owing to the simultaneous microstructure development and polymer interpenetration. KW - Flame retardants KW - Phosphorus-modified polysulfone KW - Fracture toughness PY - 2007 SN - 0032-3861 SN - 1873-2291 VL - 48 IS - 3 SP - 778 EP - 790 PB - Springer CY - Berlin AN - OPUS4-14515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artner, J. A1 - Ciesielski, M. A1 - Walter, O. A1 - Döring, M. A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Schartel, Bernhard T1 - A novel DOPO-based diamine as hardener and flame retardant for epoxy resin systems N2 - 10-Ethyl-9-oxa-10-phosphaphenanthrene-10-oxide (1) can be nitrated using acetic anhydride and fuming nitric acid. The nitro group is reduced using palladium on charcoal and hydrogen. These reaction conditions are used for the synthesis of an analogous DOPO-based diaminic hardener (7). An evaluation of the curing behavior, mechanical properties and flammability of a neat resin made of DGEBA and 7 (DGEBA + 7) and of a carbon fiber-reinforced resin made of DGEBA, 4,4-diaminodiphenylsulfon (DDS) and 7 (DGEBA + DDS + 7) shows the potential of this hardener to lead to flame-retardant systems while keeping relevant properties on a high level; especially when compared to a similar system (DGEBA + DDS + 1). KW - Composites KW - Epoxy resins KW - Synthesis KW - Flame retardancy KW - Mechanical properties PY - 2008 DO - https://doi.org/10.1002/mame.200700287 SN - 1438-7492 SN - 1439-2054 VL - 293 IS - 6 SP - 503 EP - 514 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-17624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Böhning, Martin A1 - Krafft, Bernd A1 - Schartel, Bernhard T1 - Chlorbutylkautschuk/Multilayergraphen-Nanocomposites N2 - In den letzten Jahren werden zunehmend Nanopartikel als Füllstoff für Polymere vorgeschlagen und auch erfolgreich in Elastomer-Nanocomposites eingesetzt. In dieser Arbeit wird Multilayergraphen (MLG) als Nanofüllstoff näher untersucht, der sich bereits bei geringen Konzentrationen als effizient erweist. MLG besteht aus nur etwa zehn Graphenlagen. Chlorbutylkautschuk (CIIR)/MLG-Nanocomposites mit verschiedenen MLG-Gehalten wurden mit Hilfe eines ultraschallunterstützen Mischverfahrens in Lösung hergestellt und auf einem Walzwerk weiterverarbeitet. Das Einmischen von MLG führt zu einer deutlichen Verbesserung der rheologischen und mechanischen Eigenschaften, des Vernetzungsverhaltens sowie der Barrierewirkung gegenüber Gasen. Bereits der Zusatz von 3 phr MLG zu CIIR führt zu einem mehr als zweifach höheren E-Modul und zu einer Reduktion der Permeabilität von O2 und CO2 um 30 %. Höhere Konzentrationen an Nanofüllstoff resultieren in einer weiteren Verbesserung der Eigenschaften der Nanocomposites. Weiterhin zeigten die CIIR/MLG-Nanocomposites auch eine geringere Entflammbarkeit. KW - Elastomere KW - Nanokomposite KW - Graphen KW - Chlorbutylkautschuk PY - 2017 SN - 0176-1625 VL - 70 IS - 5 SP - 311 EP - 322 PB - Dr. Gupta Verlag CY - Ratingen AN - OPUS4-40327 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard A1 - Stöß, K. A1 - Ciesielski, M. A1 - Diederichs, J. A1 - Döring, M. A1 - Krämer, J. A1 - Altstädt, V. T1 - A new halogen-free flame retardant based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries N2 - The pyrolysis and fire behavior of halogen-free flame-retarded DGEBA/DMC, RTM6 and their corresponding 60 vol.-% carbon fibers (CF) composites were investigated. A novel phosphorous compound (DOPI) was used. Its action is dependent on the epoxy matrix. DGEBA/DMC and DOPI decompose independently of each other. Only flame inhibition occurs in the gas phase. RTM6 shows flame inhibition and a condensed phase interaction increasing charring. Both mechanisms decrease with increasing irradiance, whereas in RTM6-CF charring is suppressed at low ones. RTM6+DOPI shows a higher LOI (34.2%) than DGEBA/DMC+DOPI and a V-0 classification in UL 94. Adding CF only enhances the LOI, DOPI+CF leads to a superposition in LOI for DGEBA/DMC-CF+DOPI (31.8%, V-0) and a synergism for RTM6-CF+DOPI (47.7%, V-0). KW - Composites KW - Flame retardancy KW - Glass transition KW - Pyrolysis KW - Thermosets PY - 2011 DO - https://doi.org/10.1002/mame.201000242 SN - 1438-7492 SN - 1439-2054 VL - 296 IS - 1 SP - 14 EP - 30 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Krafft, Bernd A1 - Rybak, Thomas A1 - Schartel, Bernhard T1 - Multilayer Graphene/Carbon Black/Chlorine Isobutyl Isoprene Rubber Nanocomposites N2 - High loadings of carbon black (CB) are usually used to achieve the properties demanded of rubber compounds. In recent years, distinct nanoparticles have been investigated to replace CB in whole or in part, in order to reduce the necessary filler content or to improve performance. Multilayer graphene (MLG) is a nanoparticle made of just 10 graphene sheets and has recently become commercially available for mass-product nanocomposites. Three phr (part for hundred rubbers) of MLG are added to chlorine isobutyl isoprene rubber (CIIR)/CB composites in order to replace part of the CB. The incorporation of just 3 phr MLG triples the Young’s modulus of CIIR; the same effect is obtained with 20 phr CB. The simultaneous presence of three MLG and CB also delivers remarkable properties, e.g. adding three MLG and 20 phr CB increased the hardness as much as adding 40 phr CB. A comprehensive study is presented, showing the influence on a variety of mechanical properties. The potential of the MLG/CB combination is illustrated to reduce the filler content or to boost performance, respectively. Apart from the remarkable mechanical properties, the CIIR/CB/MLG nanocomposites showed an increase in weathering resistance. KW - nanocomposites KW - rubber KW - multilayer graphene KW - carbon black PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-358569 DO - https://doi.org/10.3390/polym8030095 SN - 2073-4360 VL - 8 SP - 95 PB - MDPI CY - Basel, Switzerland AN - OPUS4-35856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Wachtendorf, Volker A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Multifunctional multilayer graphene/elastomer nanocomposites N2 - Elastomers are usually reinforced and employed in different applications. Various different nanoparticles, including layered silicates, carbon nanotubes, and expanded graphite, are currently being used as nanofiller. Multilayer Graphene (MLG) is proposed as promising nanofiller to improve the functional properties of Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR) and Styrene–Butadiene Rubber (SBR) at low concentrations. MLG is constituted by only approximately 10 graphene sheets. Nanocomposites with extremely low MLG content (3 phr) showed evident improvement in rheological, mechanical and curing properties. The Young's modulus of the nanocomposites increased more than twice in comparison with the unfilled rubbers. MLG also improved the weathering resistance of the different rubbers. The nanocomposites conserved their initial mechanical properties against weathering exposure. KW - Elastomer KW - Nanocomposite KW - Multilayer graphene PY - 2015 DO - https://doi.org/10.1016/j.eurpolymj.2015.07.050 SN - 0014-3057 SN - 1873-1945 VL - 71 SP - 99 EP - 113 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-33843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Metzsch-Zilligen, E. A1 - Großhauser, M. A1 - Pfaendner, R. A1 - Schartel, Bernhard T1 - Rapid mass calorimeter as a high-throughput screening method for the development of flame-retarded TPU N2 - The rapid mass calorimeter (RMC) was used as a screening tool based on accelerated fire testing to assess flame-retarded thermoplastic polyurethane (TPU). The reliability of RMC results was proven with the cone calorimeter as reference fire test. The influence of melamine cyanurate (MC) concentration on the fire performance of TPU was investigated, along with some flame-retardant combinations such as MC with aluminium diethylphosphinate (AlPi), aluminium trihydrate (ATH), and melamine polyphosphate (MPP). The two-stage burning behaviour of TPU was investigated in detail; the first stage corresponds mainly to the hard segments' decomposition and has a much lower effective heat of combustion (EHC) than the second stage, in which mainly the soft segments decompose and an intensive liquid pool fire is observed in the cone calorimeter set-up. In addition to fire testing with the cone calorimeter, RMC, and UL 94 flammability tests, the decomposition of the materials was investigated using thermogravimetric analysis coupled with infrared spectrometry (TGeFTIR). TPU/MC/AlPi shows the most promising results, achieving V-0 classification in UL 94 and reducing the extreme peak heat release rate (PHRR) of the liquid pool fire from 3154 kW/m2 to 635 kW/m2. Using MC/AlPi/MPP enhances the latter PHRR reduction further. The decomposition products identified in the gas phase via TGeFTIR reveal specific MCeAlPi eMPP interactions, as they differ from products seen in systems with MC/AlPi or MC/MPP. Correlations between RMC and cone calorimeter results were examined and presented in the final part of the paper. Several characteristics correlate strongly, pointing out that RMC is a reliable high-throughput fire testing method to screen multicomponent flame-retardant solutions in TPU. KW - Thermoplastic polyurethane KW - Flame retardancy KW - Rapid mass calorimeter KW - High throughput screening PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456982 SN - 0141-3910 SN - 1873-2321 VL - 156 SP - 43 EP - 58 PB - Elsevier Ltd. AN - OPUS4-45698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Combination of phosphorous flame retardants and aluminum trihydrate in multicomponent EPDM composites N2 - Ethylene propylene diene monomer (EPDM) Rubbers with the flame retardants tris(2-ethylhexyl)phosphate, ammonium polyphosphate, polyaniline, and aluminum trihydroxide were prepared and analyzed in this study. The homogenous dispersion of the fillers in the rubber matrix was confirmed by scanning electron microscope. To investigate the interplay of the different flame retardants, the flame retardants were varied systematically. The comprehensive study sought combinations of flame retardants that allow high loadings of flame retardants without deterioration of the physical and mechanical properties of the EPDM rubber. The eight EPDM rubbers were investigated via thermogravimetric analysis and pyrolysis gas chromatography coupled with a mass spectrometer (Py GC/MS) to investigate the potential synergistic effects. In the Py-GC/MS experiments, 27 pyrolysis products were identified. Furthermore, UL 94, limiting oxygen index, FMVSS 302, glow wire tests, and cone calorimeter tests were carried out. In the cone calorimeter test the EPDM rubbers R-1AP and R-1/2P achieved an increase in residue at flameout of 76% and a reduction in total heat evolved of about 35%. Furthermore, the compounds R-1AP and R-1/2P achieved a reduction in MARHE to about 150 kW m−1, a reduction of over 50% compared to the unprotected rubber R. KW - EPDM KW - Rubber KW - Aluminum hydroxide (ATH) KW - Phosphorous flame retardant PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502859 DO - https://doi.org/10.1002/pen.25280 SN - 1548-2634 VL - 60 IS - 2 SP - 267 EP - 280 PB - Wiley AN - OPUS4-50285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Velencoso, M. M. A1 - Pollok, D. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Aromatic vs. Aliphatic Hyperbranched Polyphosphoesters as Flame Retardants in Epoxy Resins N2 - The current trend for future flame retardants (FRs) goes to novel efficient halogen-free materials, due to the ban of several halogenated FRs. Among the most promising alternatives are phosphorus-based FRs, and of those, polymeric materials with complex shape have been recently reported. Herein, we present novel halogen-free aromatic and aliphatic hyperbranched polyphosphoesters (hbPPEs), which were synthesized by olefin Metathesis polymerization and investigated them as a FR in epoxy resins. We compare their efficiency (aliphatic vs. aromatic) and further assess the differences between the monomeric compounds and the hbPPEs. The decomposition and vaporizing behavior of a compound is an important factor in its flame-retardant behavior, but also the interaction with the pyrolyzing matrix has a significant influence on the performance. Therefore, the challenge in designing a FR is to optimize the chemical structure and its decomposition pathway to the matrix, with regards to time and temperature. This behavior becomes obvious in this study, and explains the superior gas phase activity of the aliphatic FRs. KW - Phosphorus KW - Metathesis KW - Dendritic KW - Cone calorimeter KW - Fire test PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494535 DO - https://doi.org/10.3390/molecules24213901 SN - 1420-3049 VL - 24 IS - 21 SP - 3901 PB - MDPI AN - OPUS4-49453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Sánchez-Olivares, G. A1 - Pérez-Chávez, R. A1 - Schartel, Bernhard T1 - Natural keratin and coconut fibres from industrial wastes in flame retarded thermoplastic starch biocomposites N2 - Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties. KW - Biomaterials KW - Biodegradable KW - Calorimetry KW - Composites KW - Flame retardance PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472518 DO - https://doi.org/10.3390/ma12030344 SN - 1996-1944 VL - 12 IS - 3 SP - 344, 1 EP - 24 PB - MDPI AN - OPUS4-47251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, Jens C. A1 - Battig, Alexander A1 - Zimmermann, Lisa A1 - Wagner, Martin A1 - Fischer, Jochen A1 - Schartel, Bernhard A1 - Wurm, Frederik R. T1 - Systematically controlled decomposition mechanism in phosphorus flame retardants by precise molecular architecture: P−O vs P−N N2 - Flame retardants (FR) are inevitable additives to many plastics. Halogenated organics are effective FRs but are controversially discussed due to the release of toxic gases during a fire or their persistence if landfilled. Phosphorus-containing compounds are effective alternatives to halogenated FRs and have potential lower toxicity and degradability. In addition, nitrogencontaining additives were reported to induce synergistic effects with phosphorus-based FRs. However, no systematic study of the gradual variation on a single phosphorus FR containing both P−O and P−N moieties and their comparison to the respective blends of phosphates and phosphoramides was reported. This study developed general design principles for P−O- and P−N-based FRs and will help to design effective FRs for various polymers. We synthesized a library of phosphorus FRs that only differ in their P-binding pattern from each other and studied their decomposition mechanism in epoxy resins. Systematic control over the decomposition pathways of phosphate (PO(OR)3), phosphoramidate (PO(OR)2(NHR)), phosphorodiamidate (PO(OR)(NHR)2), phosphoramide (PO(NHR)3), and their blends was identified, for example, by reducing cis-elimination and the formation of P−N-rich char with increasing nitrogen content in the P-binding sphere. Our FR epoxy resins can compete with commercial FRs in most cases, but we proved that the blending of esters and amides outperformed the single molecule amidates/diamidates due to distinctively different decomposition mechanisms acting synergistically when blended. KW - Phosphorus KW - Flame retardants KW - Epoxies KW - Mechanistic study KW - Toxicity PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481549 DO - https://doi.org/10.1021/acsapm.9b00129 SN - 2637-6105 VL - 1 IS - 5 SP - 1118 EP - 1128 PB - ACS AN - OPUS4-48154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Metzsch-Zilligen, E. A1 - Großhauser, M. A1 - Pfaendner, R. A1 - Schartel, Bernhard T1 - Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane N2 - The multicomponent flame retardant system of melamine polyphosphate (MPP), melamine cyanurate (MC) and aluminum diethylphosphinate (AlPi) is proposed and investigated for thermoplastic polyurethane (TPU). The synergy between those additives and the resulting superior fire performance are discussed. Systematically varied sets of flame retarded TPU with various MPP/MC/AlPi ratios were investigated in terms of fire behavior, pyrolysis products and mechanical properties. The total amount of the additives was always 30 wt.-%. Further, the influence of various AlPi concentrations was investigated. The optimal MPP:MC ratio was determined while keeping the amount of AlPi constant. The combination of 8 wt.-% MPP, 12 wt.-% MC and 10 wt.-% is proposed as the most promising halogen free flame retardant formulation for TPU, because it yielded a reduction in PHRR from 2660 kW/m2 (TPU) to 452 kW/m2 and enabled V-0 classification in the UL 94 test. Combinations of MPP and MC as well a high concentration of AlPi are beneficial for the mechanical properties e.g. tensile strength and elongation at break of the formulations and could be a strong competitor to commercial flame retarded TPUs. KW - Thermoplastic polyurethane KW - Synergy KW - Melamine cyanurate KW - Melamine polyphosphate KW - Aluminum diethylphosphinate KW - Rapid mass calorimeter PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472523 DO - https://doi.org/10.1016/j.polymertesting.2019.01.001 SN - 0142-9418 VL - 74 SP - 196 EP - 204 PB - Elsevier Ltd. AN - OPUS4-47252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Sanchez-Olivares, G. A1 - Rockel, Daniel A1 - Maldonado-Santoyo, M. A1 - Schartel, Bernhard T1 - Waste not, want not: The use of leather waste in flame retarded EVA N2 - Leather is among the most ancient, widely used materials worldwide. Industrial-scale leather production produces large quantities of organic waste attained during shaving and buffing steps during processing. In this study, leather wastes (LW) are used as fillers in flame retarded polymer composites. LW is investigated as a multifunctional bio-filler that enhances the fire performance of flame retarded poly(ethylene–vinyl acetate) (EVA) containing phosphorus flame retardants (P-FRs) ammonium polyphosphate (APP) or a melamine-encapsulated APP (eAPP). Using LW from tanneries as adjuvants to enhance P-FRs in EVA reduces industrial wastes that otherwise require costly waste management solutions. Materials are characterized multi-methodically via mechanical tests, electron microscopy, rheology, thermogravimetric analysis, evolved gas analysis, and condensed phase FTIR, also reaction-to-small-flames and cone calorimeter tests. EVA containing 10 wt-% LW and 20 wt-% P-FRs achieve 20% reductions in fire loads versus EVA, and up to 10% reduction in effective heats of combustion versus EVA with equal (30 wt-%) P-FR loadings. Enhanced char stabilization of EVA composites with LW and P-FRs lowered peaks of heat release rates up to 53% compared to EVA, and up to 40% compared to equal P-FRs loadings. Synergisms between LW and P-FRs in EVA are quantified. A chemical decomposition mechanism is proposed. KW - Leather waste KW - Tannery industry KW - EVA KW - Fire protection KW - Flame retardancy KW - Charring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532977 DO - https://doi.org/10.1016/j.matdes.2021.110100 SN - 0264-1275 VL - 210 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-53297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Schulze, Dietmar A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - Networking Skills: The Effect of Graphene on the Crosslinking of Natural Rubber Nanocomposites with Sulfur and Peroxide Systems N2 - Tailored crosslinking in elastomers is crucial for their technical applications. The incorporation of nanoparticles with high surface-to-volume ratios not only leads to the formation of physical networks and influences the ultimate performance of nanocomposites, but it also affects the chemical crosslinking reactions. The influence of few-layer graphene (FLG) on the crosslinking behavior of natural rubber is investigated. Four different curing systems, two sulfur-based with different accelerator-to-sulfur ratios, and two peroxide-based with different peroxide concentrations, are combined with different FLG contents. Using differential scanning calorimetry (DSC), vulcametry (MDR) and swelling measurements, the results show an accelerating effect of FLG on the kinetics of the sulfur-based curing systems, with an exothermic reaction peak in DSC shifted to lower temperatures and lower scorch and curing times in the MDR. While a higher accelerator-to-sulfur ratio in combination with FLG leads to reduced crosslinking densities, the peroxide crosslinkers are hardly affected by the presence of FLG. The good agreement of crosslink densities obtained from the swelling behavior confirms the suitability of vulcameter measurements for monitoring the complex vulcanization process of such nanocomposite systems in a simple and efficient way. The reinforcing effect of FLG shows the highest relative improvements in weakly crosslinked nanocomposites. KW - Nanocomposite KW - Elastomers KW - Graphene KW - Crosslinking KW - Network KW - Rubber KW - Vulcanization PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560409 DO - https://doi.org/10.3390/polym14204363 VL - 14 IS - 20 PB - MDPI AN - OPUS4-56040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez Olivares, G. A1 - Battig, Alexander A1 - Goller, Sebastian M. A1 - Rockel, Daniel A1 - Ramirez Gonzáles, V. A1 - Schartel, Bernhard T1 - Imparting Fire Retardancy and Smoke Suppression to Leather during Tanning Processes N2 - Leather is considered a luxury good when used in seating and upholstery. To improve safety, flame retardancy in leather is usually achieved through various finishing processes such as spray or roller coating. These treatments require processing steps that cost time and are laborintensive. One avenue to achieving flame retardancy in leather is to add flame retardants during the tanning process. However, the influence on flame retardancy exerted by specific intumescent additives specifically added during leather tanning has yet to be investigated. This work explores the roles played by intumescent additive compounds in flame retarding leather when they are added during tanning instead of applied as a coating. Via a systematic investigation of various compound mixtures, the flame retardant effects in the condensed and the gas phases are elucidated. The results show a strong impact of melamine in the gas phase and of polyphosphates in the condensed phase. Their impact was quantified in fire and smoke analysis, showing a 14% reduction in the peak of heat release rate, strongly reduced burning lengths, and a 20% reduction in total smoke release compared to nontreated leather. These results illuminate the key role played by specific compounds in the flame retardancy of leather, particularly when they are added specifically during the tanning process instead of being applied as a coating. This method has great potential to reduce processing steps, lower costs, and improve material safety. KW - Leather KW - Fire protection KW - Intumescent additives KW - Smoke suppression PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564777 DO - https://doi.org/10.1021/acsomega.2c05633 SN - 2470-1343 VL - 7 IS - 48 SP - 44156 EP - 44169 PB - ACS AN - OPUS4-56477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hupp, Vitus A1 - Schartel, Bernhard A1 - Flothmeier, K. A1 - Hartwig, A. T1 - Fire Behavior of Pressure-sensitive Adhesive Tapes and Bonded Materials N2 - Pressure-sensitive adhesive tapes are used in several industrial applications such as con-struction, railway vehicles and the automotive sector,where the burning behavior is ofcrucial importance. Flame retarded adhesivetapes are developed and provided, however,often without considering the interaction of adhesive tapes and the bonded materialsduring burning nor the contribution of the tapes to fire protection goal of the bondedcomponents in distinct fire tests. This publication delivers an empirical comprehensiveknowledge how adhesive tapes and their flame retardancy effect the burning behaviorof bonded materials. With a special focus on the interaction between the single compo-nents, one flame retarded tape and one tapewithout flame retardant are examined inscenarios of emerging and developing fires, along with their bonds with the commonmaterials wood, zinc-plated steel, mineral wool, polycarbonate, and polymethylmethacry-late. The flame retardant significantly improved the flame retardancy of the tape as afree-standing object and yielded a V-2 rating in UL 94 vertical test and raised the OxygenIndex by 5 vol.%. In bonds, or rather laminates, the investigations prove that the choiceof carrier and substrates are the factors with the greatest impact on the fire propertiesand can change the peak of heat release rate and the maximum average rate of heatemission up to 25%. This research yielded a good empirical overall understanding of thefire behavior of adhesive tapes and bonded materials. Thus, it serves as a guide for tapemanufacturers and applicants to develop tapes and bonds more substrate specific. KW - Adhesives KW - Cone calorimeter KW - Flame retardancy KW - Laminates KW - Phosphorus flame retardants KW - Pressure-sensitive adhesive KW - Tapes PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593207 DO - https://doi.org/10.1002/fam.3171 SN - 0308-0501 SN - 1099-1018 VL - 48 IS - 1 SP - 114 EP - 127 PB - Wiley CY - New York, NY AN - OPUS4-59320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittrich, Bettina A1 - Wartig, K.-A. A1 - Hofmann, D. A1 - Mülhaupt, R. A1 - Schartel, Bernhard T1 - The influence of layered, spherical, and tubular carbon nanomaterials' concentration on the flame retardancy of polypropylene N2 - The characteristic influences of increasing concentrations of graphene, expanded graphite (EG), carbon black (CB), and multiwall carbon nanotubes (MWNT) are investigated on pyrolysis, reaction to small flame, burning behavior, and on electrical, thermal, and rheological properties of flame retarded polypropylene (PP-FR). The property-concentration dependency is different for the various material properties, as threshold, linear, and leveling off functions were observed. Increasing concentrations of carbon nanoparticles resulted in a decrease in the electrical resistivity of the polymer by crossing the percolation threshold. The developing nanoparticle network changes melt flow behavior for small shear rates, increases thermal conductivity and therefore, affects the UL 94 classification and oxygen index. The onset temperature of PP decomposition is shifted to temperatures up to 37°C higher; the peak heat release rate is reduced by up to 74% compared to PP-FR. Both effects leveled off with increasing particle concentration. Among the four carbon nanomaterials tested, graphene presents superior influence on composite properties over the tested concentration range and outperforms commercial CB, MWNT, and EG. POLYM. COMPOS., 36:1230–1241, 2015. KW - Graphene KW - Flame retardancy KW - Concentration dependency KW - Nanocomposite KW - Carbon nanomaterial PY - 2015 DO - https://doi.org/10.1002/pc.23027 SN - 0272-8397 SN - 1548-0569 VL - 36 IS - 7 SP - 1230 EP - 1241 PB - Society of Plastics Engineers CY - Manchester, NH AN - OPUS4-33619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goller, Sebastian M. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - No business as usual: The effect of smoke suppressants commonly used in the flame retardant PA6.6 on smoke and fire properties N2 - As most of polymeric materials are inherently flammable, flame retardants (FR) are commonly used to reduce their fire risks. Nevertheless, these flame retardant materials are often detrimental to smoke parameters like specific optical density or smoke toxicity. The influence of several smoke suppressants (SP)-zinc stannate, zinc phosphate, titanium oxide and hydrotalcite-were investigated with respect to flame retardancy, smoke emission, particle emission and smoke toxicity in a diethyl aluminum phosphinate (AlPi) flame retardant polyamide 6.6 (PA6.6). It was shown that the interaction between SP, FR and polymer is crucial for smoke and fire properties and can change the mode of action of the FR as well the decomposition mechanism of the polymer. Small amounts of SP show less effect on forced flaming behavior and the optical density, but they can influence flammability and the particle size distribution of the soot particles. The flame retardancy was significantly enhanced by 5 wt.-% zinc stannate in PA6.6 under forced flaming conditions. The charring mechanism was improved, and the mode of action of AlPi switched from the gas to the condensed phase. This resulted of in a reduced PHRR and TSP and an increase in residue yield. The smoke toxicity and optical density were reduced in the smoke density chamber as well. The smoke particles shifted to smaller sizes as the time in the pyrolytic zone increased. The formation of a dense char is assumed to be the key factor to enhance smoke suppression and flame retardancy properties. KW - Polyamide 6.6 KW - Smoke suppression KW - Flame retardancy KW - Zinc stannate KW - Smoke density PY - 2023 DO - https://doi.org/10.1016/j.polymdegradstab.2023.110276 SN - 0141-3910 VL - 209 PB - Elsevier Ltd. AN - OPUS4-56981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Linteris, G.T. A1 - Stoliarov, S.I. A1 - Lyon, R.E. A1 - Walters, R.N. A1 - Hofmann-Böllinghaus, Anja T1 - Prediction of the mass loss rate of polymer materials: Impact of residue formation N2 - Two different numerical simulation tools, Fire Dynamic Simulator (FDS) and ThermaKin, are investigated with respect to their capability to predict the mass loss rate of polymer materials exposed to different fires. For validation, gasification apparatus and cone calorimeter tests are conducted. The main focus is on the influence of residue formation. Therefore, poly (butylene terephthalate) (PBT) and PBT reinforced with glass fibres (PBT-GF) are investigated and compared. PBT decomposes almost completely, while PBT-GF forms residue. The materials are characterised in order to provide suitable input parameters. Additionally the total incident heat flux to the sample is measured. With accurate input parameters, FDS and ThermaKin predicted the pyrolysis behaviour of PBT very well. Only some limitations are identified regarding the residue-forming PBT-GF. Both numerical simulation tools demonstrate a high value regarding the assessment of parameters' relative impacts and thus the evaluation of optimisation routes in polymer and composite development. KW - Polymer KW - Pyrolysis simulation KW - Residue formation KW - Fire dynamics simulator (FDS) KW - ThermKin PY - 2012 DO - https://doi.org/10.1016/j.combustflame.2012.03.012 SN - 0010-2180 SN - 1556-2921 VL - 159 IS - 9 SP - 2974 EP - 2984 PB - Elsevier CY - New York, NY AN - OPUS4-26382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André A1 - Sturm, Heinz A1 - Kleemeier, M. A1 - Hartwig, A. A1 - Vogt, C. A1 - Fischer, R.X. T1 - Layered silicate epoxy nanocomposites: formation of the inorganic-carbonaceous fire protection layer N2 - The layered silicate (LS) modification and processing parameters applied control the morphology of the LS/polymer composites. Here, increasing the surface area of the LS particles by using alternative drying processes increases dispersion towards a more typical nanocomposite morphology, which is a basic requirement for promising flame retardancy. Nevertheless, the morphology at room temperature does not act itself with respect to flame retardancy, but serves as a prerequisite for the formation of an efficient surface protection layer during pyrolysis. The formation of this residue layer was addressed experimentally for the actual pyrolysis region of a burning nanocomposite and thus our results are valid without any assumptions or compromises on the time period, dimension, surrounding atmosphere or temperature. The formation of the inorganic-carbonaceous residue is influenced by bubbling, migration, reorientation, agglomeration, ablation, and perhaps also delamination induced thermally and by decomposition, whereas true sintering of the inorganic particles was ruled out as an important mechanism. Multiple, quite different mechanisms are relevant during the formation of the residue, and the importance of each mechanism probably differs from one nanocomposite system to another. The main fire protection effect of the surface layer in polymer nanocomposites based on non-charring or nearly non-charring polymers is the increase in surface temperature, resulting in a substantial increase in reradiated heat flux (heat shielding). KW - Nanocomposite KW - Fire retardancy KW - Epoxy resin KW - Fire behavior KW - Flammability PY - 2011 DO - https://doi.org/10.1002/pat.1644 SN - 1042-7147 SN - 1099-1581 VL - 22 IS - 12 SP - 1581 EP - 1592 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-24916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Bahr, Horst A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly(1,4-butylene terephthalate): the influence of metal cation N2 - The pyrolysis and fire behavior of glass-fiber reinforced poly(butylene terephthalate) (PBT/GF) with two different metal phosphinates as flame retardants in combination with and without melamine cyanurate (MC) were analyzed by means of thermogravimetry, thermogravimetry coupled with infrared spectroscopy, flammability, and cone calorimeter tests as well as scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray fluorescence spectroscopy. In PBT/GF, dosages of 13-20% of the halogen-free flame retardant aluminum phosphinate or aluminum phosphinate in combination with MC fulfill the requirements for electrical engineering and electronics applications (UL 94 = V-0; LOI > 42%), whereas the use of the same amount of zinc phosphinate or zinc phosphinate in combination with MC does not improve the fire behavior satisfactorily (UL 94 = HB; LOI = 27-28%). The performance under forced flaming conditions (cone calorimeter) is quite similar for both of the metal phosphinates. The use of aluminum and zinc salts results in similar flame inhibition predominantly due to the release of the phosphinate compounds in the gas phase. Both metal phosphinates and MC interact with the polymer changing the decomposition characteristics. However, part of the zinc phosphinate vaporizes as a complete molecule. Because of the different decomposition behavior of the metal salts, only the aluminum phosphinate results in a small amount of thermally stable carbonaceous char. In particular, the aluminum phosphinate-terephthalate formed is more stable than the zinc phosphinate-terephthalate. The small amount of char has a crucial effect on the thermal properties and mechanical stability of the residue and thus the flammability. KW - Flame retardance KW - Polyester KW - Phosphinates KW - Pyrolysis KW - Cone calorimeter PY - 2008 DO - https://doi.org/10.1002/pat.1147 SN - 1042-7147 SN - 1099-1581 VL - 19 IS - 6 SP - 680 EP - 692 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-17620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Heinz A1 - Schartel, Bernhard A1 - Weiß, André A1 - Braun, Ulrike T1 - SEM/EDX: Advanced investigation of structured fire residues and residue formation N2 - Heterogeneous, gradual or structured morphology of fire residues plays an important role in fire retardancy of polymers. A scanning electron microscope with an attached energy dispersive X-ray spectrometer (SEM/EDX) is highlighted as a powerful tool for the advanced characterization of such complex fire residues, since it offers high resolution in combination with both good depth of field and analysis of chemical composition. Two examples are presented: First, comprehensive SEM/EDX investigation on a complex structured fire residue of glass fibre reinforced polyamide 6,6 (PA 66-GF) flame retarded by diethylaluminium phosphinate, melamine polyphosphate and some zinc borate. A multilayered surface crust (thickness ~ 24 µm) covers a rather hollow area stabilized by GF glued together. The resulting efficient thermal insulation results in self-extinguishing before pyrolysis is completed, even under forced-flaming combustion. Second, sophisticated, quasi online SEM/EDX imaging of the formation of residual protection layer in layered silicate epoxy resin nanocomposites (LSEC). Burning specimens were quenched in liquid nitrogen for subsequent analyses. Different zones were distinguished in the condensed phase characterized by distinct processes such as melting and ablation of organic material, as well as agglomeration, depletion, exfoliation and reorientation of the LS. KW - Fire residue KW - SEM/EDX KW - Fire retardancy KW - PA 66 KW - Layered silicate KW - Diethylaluminium phosphinate PY - 2012 DO - https://doi.org/10.1016/j.polymertesting.2012.03.005 SN - 0142-9418 VL - 31 IS - 5 SP - 606 EP - 619 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-25802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Gluth, Gregor A1 - Watolla, Marie-Bernadette A1 - Morys, Michael A1 - Häßler, Dustin A1 - Schartel, Bernhard T1 - Neue Wege: Reaktive Brandschutzbeschichtungen für Extrembedingungen N2 - Wesentlich für das Sicherheitsniveau und damit die nachhaltige Wettbewerbsfähigkeit des Technologiestandortes Deutschland ist der Brandschutz in Industrieanlagen, in Gebäuden und im Transportwesen. Der vorbeugende bauliche Brandschutz hat u. a. das Ziel, die Brand- und Rauchausbreitung im Brandfall für eine gewisse Zeit zu behindern, damit die erforderlichen Lösch- und Rettungsarbeiten durchgeführt werden können. Dies geschieht u.a. durch Anforderungen an die Feuerwiderstandsfähigkeit brandbeanspruchter Bauteile. Der Feuerwiderstand eines Bauteils ist die Fähigkeit während eines angegebenen Zeitraums in einer genormten Feuerwiderstandsprüfung bezüglich mechanischer Stabilität und/oder thermischer Isolierung nicht zu versagen. Reaktive Brandschutzbeschichtungen erhöhen für viele Bauteile sehr effektiv den Feuerwiderstand. Die Beschichtungen und die Brandprüfungen müssen jedoch an die immer komplexeren Anwendungen und/oder extremeren Anforderungen angepasst und weiterentwickelt werden. Aktuelle Forschungsschwerpunkte liegen dabei in der Entwicklung neuer Materialien (z.B. Geopolymere, keramisierende Beschichtungen, silikonbasierte Beschichtungen) für extreme Brandszenarien (extreme Temperaturen, lange Beanspruchungszeiten) und in der Realisierung komplexer Funktionalitäten (komplexe Geometrien, bewegliche Komponenten) sowie in der Entwicklung neuer Testmethoden (Feuerwiderstand als bench-scale Tests, kostengünstiges Screening, Feuerwiderstand in extremen Brandszenarien). Die Entwicklung geht dabei weg von der präskriptiven Bewertung hin zur leistungsorientierten (performance-based) Bewertung in individuellen Brandszenarien oder von komplexen Bauteilen. Im Rahmen dieser Arbeit werden Lösungsansätze für die neuen Herausforderungen an die reaktiven Brandschutzsysteme unter Extrembedingungen und deren Testmöglichkeiten vorgestellt und diskutiert. Im Mittelpunkt stehen dabei neu entwickelte bench-scale Testmethoden zum Screening von neuen Beschichtungsmaterialien sowie zur Beurteilung spezieller bzw. materialspezifischer Aspekte des Feuerwiderstands unter Extrembedingungen. KW - Reaktive Brandschutzsysteme KW - Brandtest PY - 2016 DO - https://doi.org/10.1002/bate.201600032 SN - 0932-8351 SN - 1437-0999 VL - 93 IS - 8 SP - 531 EP - 542 PB - Ernst & Sohn Verlag CY - Berlin AN - OPUS4-37115 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deng, C. A1 - Yin, Huajie A1 - Li, R.-M. A1 - Huang, S.-C. A1 - Schartel, Bernhard A1 - Wang, Y.-Z. T1 - Modes of action of a mono-component intumescent flame retardant MAPP in polyethylene-octene elastomer N2 - A mono-component intumescent flame retardant named ethylenediamine-modified ammonium polyphosphate (MAPP) is used in polyethylene-octene elastomer (POE). Insight into the flame-retardant mechanisms of the MAPP is provided from a new perspective. The fire performance of POE/MAPP composites is investigated by oxygen index (OI) and vertical burning (UL-94) tests. POE Composite containing 35 wt% MAPP achieves a V-0 rating, and its OI is 29.3 vol%. The thermogravimetric Analysis (TGA) and Fourier transform infrared spectra (FTIR) confirm that the incorporation of ethylenediamine changes the thermal decomposition of APP, mainly resulting in the formation of char layer with a thermally stable structure. Cone calorimeter analysis revealed the flame-retardant modes of action of MAPP in POE under forced-flaming conditions. Quantitative analysis illustrates that both the residue due to charring and the fuel dilution/flame Inhibition resulting from the release of incombustible products/ phosphorus species decrease the total heat release (fire load) by 20e28%. The residue increases linearly with increasing MAPP content, whereas the reduction in effective heat of combustion levels off. Moreover, the flame-retardant effect resulting from the protective properties of the char is discovered to be the dominant mode of action (up to 85% reduction) with respect to the peak heat release rate, leading to the excellent flame retardancy of POE/MAPP. KW - Ammonium polyphosphate KW - Flame retardant KW - Carbonization KW - Elastomer PY - 2017 DO - https://doi.org/10.1016/j.polymdegradstab.2017.03.006 SN - 0141-3910 SN - 1873-2321 VL - 138 SP - 142 EP - 150 PB - Elsevier AN - OPUS4-39901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Wilkie, Charles A. A1 - Camino, G. T1 - Recommendations on the scientific approach to polymer flame retardancy: Part 2 - concepts N2 - The usage of concepts in scientific communication is critical to our ability to inform the reader about work that has been performed. The significance and thus the quality of scientific discussion rely on the precise use of concepts. In this second part of a two-part paper, concerning the scientific basis of polymer fire retardancy, the proper use of concepts is addressed. Distinct concepts in flame retardancy are discussed, such as fire residue, the correlation of fire performance with char yield according to van Krevelen, catalysis, and wicking. Synergy is discussed in detail, as well as approaches to quantify it, due to its importance for flame retardant polymers. The preceding first paper (part 1) discussed the proper use of scientific terms, thermal analysis, and fire testing. Thus, together these two papers support the community by offering recommendations and addressing some of the most relevant points. They encourage to review scientific practice in the field of flame retardancy of polymers. KW - Char KW - Synergism KW - Flame retardancy KW - Flammability KW - Fire growth indices KW - Synergy index PY - 2017 DO - https://doi.org/10.1177/0734904116675370 SN - 0734-9041 SN - 1530-8049 VL - 35 IS - 1 SP - 3 EP - 20 PB - Sage AN - OPUS4-39084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Bünker, J. T1 - Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants N2 - Fire resistance has become a key property for structural lightweight sandwich components in aviation, shipping, railway vehicles, and construction. The development of future composite materials and components demands adequate test procedures for simultaneous application of compression and fully developed fire. Therefore an intermediate-scale approach (specimen size = 500 mm x 500 mm) is applied with compressive loads (up to 1 MN) and direct application of a burner to one side of the specimens, as established in aviation for severe burn-through tests. The influence of different core structures (polyvinylchloride foam, polyisocyanorate foam reinforced by stitched glass bridges, and balsa wood) was investigated for glass-fibre-reinforced sandwich specimens with and without flame retardants applied on the fabrics, in the matrix, and on surface for each specimen at the same time. Times to failure were increased up to a factor of 4. The intumescent coating prolongs the time to failure significantly. What is more, using the intrinsic potential of the front skin together with the core to protect a load bearing back skin in sandwich panels, the design of the core – here using the wood core – is the most promising approach. KW - Fire resistance KW - Fire stability KW - Glass-fibre-reinforced plastics KW - Composite KW - Core materials PY - 2017 DO - https://doi.org/10.1016/j.compstruct.2016.11.027 SN - 0263-8223 SN - 1879-1085 VL - 160 SP - 1310 EP - 1318 PB - Elsevier AN - OPUS4-38622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Schartel, Bernhard T1 - The rapid mass calorimeter: Understanding reduced-scale fire test results N2 - The effects of reducing specimen size on the fire behavior of polymeric materials were investigated by means of the rapid mass calorimeter, a high-throughput Screening instrument. Results from the rapid mass calorimeter were compared with those from the cone calorimeter. Correlation coefficients between the different measures of each method and between the two methods are discussed to elucidate the differences and similarities in the two methods. Materials with characteristic heat release rate (HRR) curves in the cone calorimeter were evaluated in detail. The rapid mass calorimeter produces valuable and interpretable results with HRR curve characteristics similar to cone calorimeter results. Compared to cone calorimeter measurements, material savings of 96% are achieved, while maintaining the Advantages of a macroscopic fire test. KW - Rapid mass calorimeter KW - High throughput KW - Cone calorimeter KW - Flame retardancy PY - 2017 DO - https://doi.org/10.1016/j.polymertesting.2016.11.027 SN - 0142-9418 VL - 57 SP - 165 EP - 174 PB - Elsevier AN - OPUS4-38739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Schmaucks, Gerd T1 - Flame retardancy synergism in polymers through different inert fillers’ geometry N2 - Low amounts (<7.5 wt%) of organically modified layered silicate (LS) as well as large amounts (>10 wt%) of spherical amorphous SiO2 (sSiO2) has been used successfully as adjuvants in commercial polymeric materials flame retarded with metal hydroxide. The combination of LS and SiO2 is investigated in different thermoplastics with respect to their fire behavior, particular to overcome the restrictions in maximum and minimum filler contents know for the single additives. The aim was to check the potential of combinations of the inert fillers in absence of a real fire retardant. The combination of LS and sSiO2 harbors the potential for flame retardancy effects close to superposition or even synergy, due to an improved structure of the fire residue. LS-sSiO2 combinations are proposed to work as adjuvants superior to LS and sSiO2 in flame retarded polymeric materials. KW - Flame retardance KW - Nanocomposites KW - Organoclay KW - Silicones KW - Fillers PY - 2017 DO - https://doi.org/10.1002/pen.24485 SN - 0032-3888 SN - 1548-2634 VL - 57 IS - 10 SP - 1099 EP - 1109 PB - SPE AN - OPUS4-42573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Schartel, Bernhard A1 - Schoch, Rebecca A1 - Schubert, Martina T1 - Holz-Kunststoff-Verbundwerkstoffe - Wie beeinflussen Flammschutzmittel die Rauchgaszusammensetzung im Brandfall? N2 - Der steigende Einsatz von Holz-Kunststoff-Verbundwerkstoffen (Wood Plastic Composite, WPC) erfordert das Wissen um seine spezifischen Eigenschaften, insbesondere dem Brand risiko. Dabei können Flammschutzmittel die Entflammbarkeit, Wärmeabgabe und die Brandausbreitung des Materials verringern. Deshalb sind der gezielte und effiziente Einsatz und die Kenntnis über die Wirkungsweise der Flammschutzmittel im WPC für den Brandschutz von enormer Bedeutung. Dazu gehört auch die Rauchentwicklung im Brandfall. Rauch beeinflusst aufgrund seiner Toxizität und seiner Sichttrübung die Fluchtmöglichkeit der betroffenen Personen. In der Rauchkammer nach ISO 5659-2 wird die Rauchentwicklung von flachen Werkstoffproben ermittelt. Die Rauchgastoxizität bzw. die Rauchgaszusammensetzung wird mithilfe der FTIR (Fourier Transformierte Infrarot)-Spektroskopie ermittelt. Frei werdende Partikel schädigen die Atemorgane und beeinflussen damit auch die Fluchtfähigkeit von Personen im Brandfall. Aussagen zur Partikelemission können mithilfe eines an die Rauchkammer gekoppelten Partikelanalysators getroffen werden. Im Rahmen dieser Arbeit wurden verschiedene flammgeschützte WPC-Systeme hinsichtlich ihres Rauchverhaltens in der Rauchkammer untersucht. Die Ergebnisse zu emittierten toxischen Gasen, Partikeln und zur Rauchentwicklung werden vorgestellt und in Abhängigkeit von den eingesetzten Flammschutzmitteln im WPC diskutiert. KW - Rauchgase KW - Holz-Kunststoff-Verbundwerkstoffe KW - Partikel KW - Flammschutz PY - 2019 DO - https://doi.org/10.1002/bate.201900020 VL - 96 SP - 1 EP - 12 PB - Wiley AN - OPUS4-48157 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Günther, Martin T1 - Flammschutz von Polyurethanen N2 - Polyurethane (PU) bilden eine der vielseitigsten Klassen der Polymerwerkstoffe. Kein anderer Kunststoff wird sowohl als Thermoplast, als Elastomer wie auch als Duroplast verarbeitet und eingesetzt. Entsprechend vielfältig sind auch die Anforderungen an den Flammschutz. Je nach Material und Anwendung müssen spezifische Brandnormen erfüllt werden. Der vorliegende Aufsatz gibt einen Überblick über die verfügbaren Ansätze, um durch geeignete Auswahl der Rohstoffe und der Flammschutzmittel diese verschiedensten Anforderungen an das Brandverhalten zu erfüllen. KW - Polyurethan KW - Flammschutz KW - Pyrolyse KW - Schaum KW - Cone calorimeter PY - 2020 VL - 20 IS - 1 SP - 48 EP - 53 PB - Dr. Gupta AN - OPUS4-50736 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Günther, Martin T1 - Flame retardancy of polyurethanes N2 - Polyurethanes (PU) represent one of the most versatile classes of plastics. They are processed and used as thermoplastic, elastomer, and thermoset. The requirements regarding flammability are correspondingly versatile. Depending on the material and the field of application, specific fire tests have to be fulfilled. This paper describes the different concepts used to fulfil these requirements by choosing the right raw materials and flame retardants. KW - Polyurethane KW - Flame retardant KW - Foam KW - Flammability KW - Pyrolysis KW - Cone calorimeter PY - 2020 VL - 17 IS - 1 SP - 44 EP - 48 PB - Dr. Gupta AN - OPUS4-50737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Yam A1 - Ma, C. A1 - Zhou, F. A1 - Hu, Y. A1 - Schartel, Bernhard T1 - Flame retardant flexible polyurethane foams based on phosphorous soybean-oil polyol and expandable graphite N2 - A phosphorous soybean-oil–based polyol was derived via epoxidation and ring opening reaction as an alternative to petrochemical-based polyol for the synthesis of flexible polyurethane foams (FPUFs). 5-wt.% and 10-wt.% of expandable graphite (EG) were added to further improve flame retardancy. The mechanical properties (tensile strength and compression stress) of the foams were investigated. Thermogravimetric analysis (TGA) coupled with Fourier-transform infrared (FTIR) were conducted to evaluate the pyrolysis; limiting oxygen index (LOI), UL 94 and cone calorimeter were performed to analyze the fire performance of the foams; smoke density chamber was used to investigate the smoke released during burning. When 10-wt.% of EG was used, the flame retardancy of the foams was much enhanced due to the synergistic effect between phosphorus and EG. The char yield was three times higher (54wt.%). The fire load MARHE approached 100 kWm−2, half of the value expected for a superposition. The combination of phosphorous polyols and EG is proposed as strategy for future flame retarded FPUFs. KW - Phosphorous soybean-oil–based polyol KW - Flexible polyurethane foam KW - Expandable graphite KW - Flame retardancy KW - Smoke measurement PY - 2021 DO - https://doi.org/10.1016/j.polymdegradstab.2021.109656 SN - 0141-3910 VL - 191 SP - 9656 PB - Elsevier Ltd. AN - OPUS4-52907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Garfias González, Karla I. A1 - Schartel, Bernhard T1 - Valorizing “non-vegan” bio-fillers: Synergists for phosphorus flame retardants in epoxy resins N2 - Sustainable, biogenic flame retardant adjuvants for epoxy resins are receiving increased focus. Zoological products like insects, bone meal, and eggshells are available in large quantities, but remain uninvestigated as functional fillers to epoxy resins, although they are potential synergists to flame retardants. The efficacy and flame retardancy of “non-vegan” additives in combination with flame retardants is investigated and the fire behavior and thermal decomposition of bio-sourced epoxy resin composites is characterized. By comparing the fire performance of composites containing flame retardants or fillers at varying loadings (5, 10, and 20%), their role as synergists that enhance the function of organophosphorus flame retardants in bio-epoxy composites is identified and quantified. Peak heat release rates were 44% lower in composites containing both filler and flame retardant versus those containing only flame retardants, and fire loads were reduced by 44% versus the pure resin, highlighting the ability of “non-vegan” fillers to function as synergists. KW - Flame retardancy KW - Synergy KW - Bio-composite KW - Epoxy resin KW - Biogenic KW - Renewable PY - 2022 DO - https://doi.org/10.1016/j.polymdegradstab.2022.109875 SN - 0141-3910 VL - 198 SP - 109875 PB - Elsevier Ltd. AN - OPUS4-54438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strommer, Bettina A1 - Battig, Alexander A1 - Schulze, Dietmar A1 - Agudo Jacome, Leonardo A1 - Schartel, Bernhard A1 - Böhning, Martin T1 - Shape, orientation, interaction, or dispersion: valorization of the influence factors in natural rubber nanocomposites N2 - The addition of nanoparticles as reinforcing fillers in elastomers yields nanocomposites with unique property profiles, which opens the door for various new application fields. Major factors influencing the performance of nanocomposites are studied by varying the type and shape of nanoparticles and their dispersion in the natural rubber matrix. The industrial applicability of these nanocomposites is put into focus using two types of graphene and a nanoscale carbon black, all commercially available, and scalable processing techniques in the form of a highly filled masterbatch production via latex premixing by simple stirring or ultrasonically assisted dispersing with surfactant followed by conventional two-roll milling and hot pressing. Different processing and measurement methods reveal the potential for possible improvements: rheology, curing behavior, static and dynamic mechanical properties, swelling, and fire behavior. The aspect ratio of the nanoparticles and their interaction with the surrounding matrix prove to be crucial for the development of superior nanocomposites. An enhanced dispersing method enables the utilization of the improvement potential at low filler loadings (3 parts per hundred of rubber [phr]) and yields multifunctional rubber nanocomposites: two-dimensional layered particles (graphene) result in anisotropic material behavior with strong reinforcement in the in-plane direction (157% increase in the Young's modulus). The peak heat release rate in the cone calorimeter is reduced by 55% by incorporating 3 phr of few-layer graphene via an optimized dispersing process. KW - Graphene KW - Natural rubber KW - Nanocomposites KW - Anisotropy KW - Fire behavior PY - 2023 DO - https://doi.org/10.5254/rct.23.77961 SN - 0035-9475 SN - 1943-4804 VL - 96 IS - 1 SP - 40 EP - 58 PB - Allen Press CY - Lawrence (KA), USA AN - OPUS4-57568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez Olivares, G. A1 - Rockel, Daniel A1 - Calderas, F. A1 - Schartel, Bernhard T1 - Utilizing leather fibers from industrial wastes as bio-filler to improve flame retardancy in polypropylene N2 - Combining buffing leather fibers from industrial waste streams with ammonium polyphosphate and bentonite clay is proposed as a flame-retardant additive for polypropylene. The paper addresses how they can be processed into attractive composites with the desired mechanical properties. Buffing leather fibers function as a multifunctional bio-filler and as a synergist for the flame retardant, resulting in fire retardancy successful enough to increase the oxygen index (LOI) by up to 7 vol.-% and to achieve a V0 UL 94 classification. Impressively reduced heat release rates are obtained in the cone calorimeter at 50 kW/m2 irradiation; for instance, the maximum average rate heat evolved (MARHE) drops from 765 to below 200 kW m􀀀 2. The synergistic effects are quantified and shown to be very strong for LOI and MARHE. This work opens the door to use waste buffing leather fibers as a promising multifunctional and synergistic bio-filler. KW - Polypropylene KW - Flame retardancy KW - Industrial waste KW - Leather fibers KW - Bio-filler PY - 2024 DO - https://doi.org/10.1016/j.jiec.2023.11.008 SN - 1226-086X SN - 1876-794X VL - 132 SP - 148 EP - 160 PB - Elsevier B.V. AN - OPUS4-59556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pappalardo, Salvatore A1 - Russo, Pietro A1 - Acierno, Domenico A1 - Rabe, Sebastian A1 - Schartel, Bernhard T1 - The synergistic effect of organically modified sepiolite in intumescent flame retardant polypropylene N2 - The pyrolysis, flammability and fire behavior of polypropylene (PP) containing an intumescent flame retardant and sepiolite nanoparticles were investigated by performing thermogravimetry, oxygen index (LOI), UL-94, and cone calorimeter tests. The combination of 0.5 wt% of premodified sepiolite (OSEP) with 12 wt% of a commercial intumescent flame retardant showed a clear synergy in LOI, UL-94 ranking and peak heat release rate. The ternary formulation achieved a V-0 classification and, consequently, allowed a reduction in the amount of flame retardant necessary to achieve this result. Whereas OSEP and pristine sepiolite nanoparticles (SEP) affect the performance in PP nanocomposites quite similarly, OSEP outperformed SEP in the combination with intumescent flame retardant. The cone calorimeter results and dynamic rheological measurements confirmed the synergistic effect between the nanofiller and the flame retardant resulting from the improved properties of the residual protective layer. KW - Polypropylene KW - Intumescent flame retardant KW - Sepiolite KW - Cone calorimetry KW - Low oxygen index PY - 2016 DO - https://doi.org/10.1016/j.eurpolymj.2016.01.041 SN - 0014-3057 VL - 76 SP - 196 EP - 207 PB - Elsevier AN - OPUS4-35854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Schartel, Bernhard T1 - Interactions in multicomponent flame-retardant polymers: Solid-state NMR identifying the chemistry behind it N2 - Distinct approaches are used to reduce the fire risks of polymers, a key issue for many industrial applications. Among the variety of approaches, the use of synergy in halogen-free multicomponent systems is one of the most auspicious. To optimize the composition of such flame-retardant systems it is essential to understand the mechanisms and the corresponding chemistry in the condensed phase. In this work different methods are used, including cone calorimeter, thermogravimetry (TG), and TG-FTIR, with the main focus on the solid-state NMR analysis of the solid residues. The structural changes in the condensed phase of two thermoplastic elastomer systems based on copolymer styrene-ethylene-butadiene-styrene (TPE-S) were investigated: TPE-S/aluminium diethylphosphinate (AlPi)/magnesium hydroxide (MH) and TPE-S/AlPi/zinc borate (ZB)/poly(phenylene oxide) (PPO). Strong flame inhibition is synergistically combined with protective layer formation. 13C-, 27Al-, 11B- and 31P MAS NMR (magic angle spinning nuclear magnetic resonance) experiments using direct excitation with a single pulse and 1H–31P cross-polarization (CP) were carried out as well as double resonance techniques. Magnesium phosphates were formed during the pyrolysis of TPE-S/AlPi/MH, while for the system TPE-S/AlPi/ZB/PPO zinc phosphates and borophosphates were observed. Thus, the chemistry behind the chemical interaction was characterized unambiguously for the investigated systems. KW - Synergy KW - Solid-state NMR KW - Flame retardancy KW - SEBS KW - Aluminium diethylphosphinate KW - Magnesium hydroxide KW - Zinc borate KW - Poly(phenylene) oxide PY - 2015 DO - https://doi.org/10.1016/j.polymdegradstab.2015.08.018 SN - 0141-3910 SN - 1873-2321 VL - 121 SP - 116 EP - 125 PB - Applied Science Publ. CY - London AN - OPUS4-34306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Wilkie, Charles A. A1 - Camino, Giovanni T1 - Recommendations on the scientific approach to polymer flame retardancy: Part 1—Scientific terms and methods N2 - The correct use of scientific terms, performing experiments accurately, and discussing data using unequivocal scientific concepts constitute the basis for good scientific practice. The significance and thus the quality of scientific communication rely on the proper use of terms and methods. It is the aim of this two-part article to support the community with recommendations for discussing the flame retardancy of polymers by addressing some of the most relevant points. The first article (part one of two) clarifies some scientific terms and, in some cases, such as for ‘‘pyrolysis,’’ ‘‘thermal decomposition,’’ and ‘‘fire resistance,’’ critically discusses their definitions in the field of fire science. Several comments are made on proper fire testing and thermal analysis, including some thoughts on uncertainty in fire testing. The proper use of distinct concepts in flame retardancy is discussed briefly in the subsequent second article (part two). This article tries to Balance imparting background on the subject with recommendations. It encourages to check scientific practice with respect to communication and applying methods. KW - Pyrolysis KW - Fire testing KW - Char KW - Flame retardant KW - Flammability KW - Fire property PY - 2016 DO - https://doi.org/10.1177/0734904116675881 SN - 0734-9041 SN - 1530-8049 VL - 34 IS - 6 SP - 447 EP - 467 PB - SAGE AN - OPUS4-38115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Greiser, Sebastian A1 - Jäger, Christian A1 - Schartel, Bernhard T1 - Aluminium diethylphosphinate versus ammonium polyphosphate: A comprehensive comparison of the chemical interactions during pyrolysis in flame-retarded polyolefine/poly(phenylene oxide) N2 - A systematic comparison of chemical interactions and fire behaviour is presented for the thermoplas-tic elastomer (block copolymer styrene-ethylene-butadiene-styrene) (TPE-S)/diethyl- and methylvinylsiloxane (Si)/poly(phenylene oxide) (PPO), flame-retarded with aluminium diethylphosphinate (AlPi)and with ammonium polyphosphate (APP), respectively. TPE-S/APP/Si/PPO performed better in the conecalorimeter test (reduction in peak heat release rate from 2042 to 475 kW m−2), but TPE-S/AlPi/Si/PPO inthe flammability tests (oxygen index (OI) and UL 94). This difference was caused by the different modes ofaction of APP (more in the condensed phase) and AlPi (mainly in the gas phase). Thermogravimetry cou-pled with Fourier transform infrared spectroscopy (TG-FTIR) was used to analyse the mass loss and theevolved gas products, while a Linkam hot-stage cell to investigate the decomposition in the condensedphase. Moreover, a detailed analysis of the fire residues was done using solid-state NMR.13C MAS NMRshowed that both flame-retarded compositions form graphite-like amorphous carbonaceous char, orig-inating from PPO.31P MAS NMR and29Si MAS NMR delivered important information about interactionbetween phosphorus and the siloxane. For TPE-S/AlPi/Si/PPO aluminium phosphate and silicon dioxideoccurred, while also silicophosphate was produced in TPE-S/APP/Si/PPO. The direct comparison of two ofthe most prominent halogen-free flame retardants containing phosphorus delivered meaningful insightsinto the modes of action and molecular mechanisms controlling flame retardancy. KW - Aluminium diethylphosphinate KW - Ammonium polyphosphate KW - Flame retardancy KW - Solid-state NMR KW - SEBS PY - 2016 SN - 0040-6031 SN - 1872-762X VL - 640 SP - 74 EP - 84 PB - Elsevier AN - OPUS4-37802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Böhning, Martin A1 - Krafft, Bernd A1 - Schartel, Bernhard T1 - Multilayer graphene chlorine isobutyl isoprene rubber nanocomposites: influence of the multilayer graphene concentration on physical and flame-retardant properties N2 - In recent years, different nanoparticles have been proposed and successfully introduced as nanofillers in rubber nanocomposites. In this study, multilayer graphene (MLG) is proposed as a nanoparticle that functions efficiently at low concentrations. MLG consists of just 10 or so graphene sheets. Chlorine isobutyl isoprene rubber (CIIR)/MLG nanocomposites with different MLG loadings were prepared using an ultrasonically assisted solution mixing procedure followed by two-roll milling. The incorporation of MLG provides a clear improvement in the rheological, mechanical, curing, and gas barrier properties of the nanocomposites. Adding only 3 phr ofMLGto CIIR increased the Young’s modulus by more than two times and reduced the permeability ofO2 andCO2 by 30%. Higher nanofiller concentrations yielded further improvement in the properties of the nanocomposites. Moreover, CIIR/MLG nanocomposites showed reduced flammability. KW - Graphene KW - Rubber KW - Nanocomposites KW - Flammability KW - Reinforcement PY - 2016 DO - https://doi.org/10.5254/rct.15.84838 SN - 0035-9475 VL - 89 IS - 2 SP - 316 EP - 334 AN - OPUS4-37595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Tabaka, Weronika A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Graphene / hydrogenated acrylonitrile-butadiene rubber nanocomposites: Dispersion, curing, mechanical reinforcement, multifunctional filler N2 - Elastomers are usually mechanically reinforced with high loadings of carbon black (CB) to achieve the properties demanded; high amounts of mineral flame retardants are used to fulfill fire safety requirements. In this study, multilayer graphene (MLG), a nanoparticle made of only 10 graphene sheets, is applied in low loadings, 3 parts per hundred rubber (phr) to reduce the total amount of filler or boost performance in hydrogenated acrylonitrilebutadiene rubber (HNBR). In the HNBR/MLG nanocomposites, 3 phr MLG replaced 15 phr CB, 3 phr aluminum trihydroxide (ATH), or 15 phr CB + 3 phr ATH. The nanocomposites were prepared via master batch by ultrasonically assisted solution mixing and subsequent conventional two-roll milling. A comprehensive study is presented, illustrating the impact of MLG on curing and mechanical properties; e.g. replacing 2.5 phr ATH with 3 phr MLG increased the Young's modulus by over 60% and hardness by 10%, while improving flame retardancy, and reducing the total heat evolved by 10%. MLG is a multifunctional filler, as demonstrated by various enhancements in terms of the mechanical and flame retardancy properties of the rubber composites. KW - Nanocomposite KW - Rubber KW - Graphene PY - 2018 DO - https://doi.org/10.1016/j.polymertesting.2018.01.035 SN - 0142-9418 SN - 1873-2348 VL - 66 SP - 268 EP - 279 PB - Elsevier Ltd. AN - OPUS4-44457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiu, Y. A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Qian, L. A1 - Liu, Z. A1 - Schartel, Bernhard T1 - Improved flame retardancy by synergy between cyclotetrasiloxane and phosphaphenanthrene/triazine compounds in epoxy thermoset N2 - A siloxane compound (MVC) and a bi-group phosphaphenanthrene/triazine compound (TGD) were employed in epoxy thermosets to explore high-efficiency flame retardant systems. With only 1wt% MVC and 3wt% TGD, an epoxy thermoset passed UL 94 V-0 rating test and achieved a limiting oxygen index value of 34.0%, exhibiting an excellent flame retardant effect. The MVC/TGD system not only decreased the peak value of heat release rate and effective heat of combustion but also imparted an improved charring ability to thermosets, thereby outstandingly reducing the flammability of 1%MVC/3%TGD/EP. Compared with the fire performance of 4%TGD/EP and 4%MVC/EP, the MVC/TGD system showed an obvious flame retardant synergistic effect, mainly depending on the general improvement of flame inhibition, charring and barrier effects of the thermoset during combustion. Evolved gas analysis combinedwith condensed-phase pyrolysis product Analysis jointly revealed the details of the changed pyrolysis mode. KW - Flame retardant KW - Epoxy resin KW - Synergy KW - Siloxane KW - DOPO KW - Triazine PY - 2017 DO - https://doi.org/10.1002/pi.5466 SN - 0959-8103 SN - 1097-0126 VL - 66 IS - 12 SP - 1883 EP - 1890 PB - Wiley AN - OPUS4-42950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zirnstein, Benjamin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - The impact of polyaniline in phosphorus flame retardant ethylene-propylene-diene-rubber (EPDM) N2 - Usually elastomers are loaded with high amounts of flame retardants to fulfill fire safety requirements. In this study the potential char precursor polyaniline (PANI) and the established fire retardant pentaerythritol (PER) were implemented in ethylene-propylene-diene monomer rubber (EPDM). PANI and PER were used in low loadings (7 phr) and combined with two phosphorous flame retardants, Ammonium polyphosphate (APP) and a piperazine-pyrophosphate/phosphoric acid compound (FP), to boost their performance. A comprehensive study is presented, explaining the impact of PANI on curing and mechanical properties, including compensation for the plasticizer-like effect of APP in EPDM, and improved flame retardancy. In the cone calorimeter test, the combination of EPDM/FP/PANI reduced the effective heat of combustion by 20%. All nine EPDM rubber compounds were investigated with the LOI and UL 94 tests, cone calorimeter, FMVSS 302 and glow wire testing to quantify fire performance. The PANI containing EPDM rubbers, EPDM/APP/PANI and EPDM/FP/PANI outperformed the corresponding PER containing, EPDM/APP/PER and EPDM/FP/PER rubbers in various tests. Moreover, the study investigated the impact of PANI and PER on the mode of action of the phosphorus species and showed that the addition of PANI increased the amount of phosphorus in the condensed phase. To receive a broader understanding of the flame retardant mode of action of PANI in combination with APP and FP, calculations were carried out to estimate the impact of PANI on the protective layer effect. KW - EPDM KW - Rubber KW - Flame retardant KW - Polyaniline KW - Pentaerythritol PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.019 SN - 0040-6031 VL - 673 SP - 92 EP - 104 PB - Elsevier B.V. AN - OPUS4-47503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Häßler, Dustin A1 - Krüger, Simone A1 - Schartel, Bernhard A1 - Hothan, Sascha T1 - Beyond the standard time-temperature curve: Assessment of intumescent coatings under standard and deviant temperature curves N2 - Nowadays there are intumescent coatings available for diverse applications. There is no established assessment of their protection performance besides the standard time-temperature curve, but natural fire scenarios often play an important role. A reliable straightforward performance-based assessment is presented. The effective thermal conductivity per thickness is calculated based on intermediate-scale fire tests. The optimum thermal insulation, the time to reach it, and the time until contingent failure of the coating are used for an assessment independent of the heating curve. The procedure was conducted on four different commercially intumescent coatings for steel construction, one solvent-based, one waterborne, one epoxy-based, and a bandage impregnated with a waterborne coating. The performance was studied under four different but similar shaped heating curves with different maximum temperatures (standard time-temperature curve, hydrocarbon curve and two self-designed curves with reduced temperature). The thermal protection performance is crucially affected by the residue morphology. Therefore, a comprehensive morphology analysis, including micro-computed tomography and scanning electron microscopy, was conducted on small-scale residues (7.5 x 7.5 cm2). Two different types of inner structures and the residue surface after different heat exposures were discussed in terms of their influence on thermal protection performance. KW - Intumescence KW - Coating KW - Computed tomography KW - Small scale KW - Heating curves KW - Residue morphology PY - 2020 DO - https://doi.org/10.1016/j.firesaf.2020.102951 SN - 0379-7112 VL - 112 SP - 102951 PB - Elsevier Ltd. AN - OPUS4-50334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Kukofka, Tobias A1 - Ruder, J. A1 - Schartel, Bernhard T1 - Durability of the flame retardance of ethylene-vinyl acetate copolymer cables: Comparing different flame retardants exposed to different weathering conditions N2 - Scientific publications addressing the durability of the flame retardance of cables during their long-term application are rare and our understanding lacks. Three commercial flame retardants, aluminum hydroxide, aluminum diethyl phosphinate (AlPi-Et), and intumescent flame retardant based on ammonium polyphosphate, applied in ethylene-vinyl acetate copolymer (EVA) model cables, are investigated. Different artificial aging scenarios were applied: accelerated weathering (UV-irradiation/temperature/rain phases), humidity exposure (elevated temperature/humidity), and salt spray exposure. The deterioration of cables’ surface and flame retardancy were monitored through imaging, color measurements, attenuated total reflectance Fourier transform infrared spectroscopy, and cone calorimeter investigations. Significant degradation of the materials’ surface occurred. The flame retardant EVA cables are most sensitive to humidity exposure; the cable with AlPi-Et is the most sensitive to the artificial aging scenarios. Nevertheless, substantial flame retardance persisted after being subjected for 2000 h, which indicates that the equivalent influence of natural exposure is limited for several years, but less so for long-term use. KW - Durability KW - Flame retardant KW - Cable KW - Weathering KW - Cone calorimeter PY - 2020 DO - https://doi.org/10.1002/APP.47548 SN - 0021-8995 VL - 137 IS - 1 SP - 47548 PB - Wiley AN - OPUS4-50237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günther, Martin A1 - Lorenzetti, A. A1 - Schartel, Bernhard T1 - From Cells to Residues: Flame-Retarded Rigid Polyurethane Foams N2 - Rigid polyurethane foams (RPUFs) exhibit short times to ignition as well as rapid flame spread and are therefore considered to be hazardous materials. This paper focuses on the fire phenomena of RPUFs, which were investigated through a multimethodological approach. Water-blown polyurethane (PUR) foams without flame retardants (FRs) as well as waterblown PUR foams containing triethyl phosphate as a gas phase-active FR were examined. The aim of this study is to clarify the influence of the FR on the fire phenomena during combustion of the foams. Additionally, materials’ densitieswere varied to range from 30 to 100 kg/m3. Thermophysical properties were studied bymeans of thermogravimetry; fire behavior and flammability were investigated via cone calorimeter and limiting Oxygen index, respectively. During the cone calorimeter test, the temperature development inside the burning specimens was monitored with thermocouples, and cross sections of quenched specimens were examined visually, giving insight into the morphological changes during combustion. The present paper delivers a comprehensive study, illuminating phenomena occurring during foam combustion and the influence of a FR active in the gas phase. The superior fire performance of flameretarded PUR foams was found to be based on flame inhibition, and on increased char yield leading to a more effective protective layer. It was proven that in-depth absorption of radiation is a significant factor for estimation of time to ignition. Cross sections investigated with the electron scanning microscope exhibited a pyrolysis front with an intact foam structure underneath. The measurement of temperature development inside burning specimens implied a shift of burning behavior towards that of non-cellular materials with rising foam density. KW - Polyurethane KW - Rigid foams KW - Fire behavior PY - 2020 DO - https://doi.org/10.1080/00102202.2019.1634060 SN - 0010-2202 SN - 1563-521X VL - 192 IS - 12 SP - 2209 EP - 2237 PB - Taylor & Francis AN - OPUS4-51483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daus, Lars-Hendrik A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Mangelsdorf, R. A1 - Korzen, Manfred T1 - A chain is no stronger than its weakest link: Weathering resistance of water-based intumescent coatings for steel applications N2 - A systematic approach was used to investigate the weathering-induced degradation of a common water–based intumescent coating. In this study, the coatings are intended for humid indoor applications on steel substrates. The coating contains ammonium polyphosphate, pentaerythritol, melamine, and polyvinyl acetate. By replacing each ingredient with a less water-soluble substance, the most vulnerable substances, polyvinyl acetate and pentaerythritol, were identified. Furthermore, the weathering resistance of the system was improved by exchanging the ingredients. The coatings were stressed by artificial weathering tests and evaluated by fire tests. Thermogravimetry and Fourier-transform infrared spectroscopy were used to study the thermal decomposition. This study lays the foundation for the development of a new generation of water-based intumescent coatings. KW - Intumescence KW - Fire resistance KW - Fire protective coatings KW - Weathering KW - Thermogravimetric analyses PY - 2021 DO - https://doi.org/10.1177/0734904120961064 SN - 0734-9041 SN - 1530-8049 VL - 39 IS - 1 SP - 72 EP - 102 PB - SAGE AN - OPUS4-52015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, C. A1 - Battig, Alexander A1 - Schartel, Bernhard A1 - Siegel, R. A1 - Senker, J. A1 - von der Forst, I. A1 - Unverzagt, C. A1 - Agarwal, S. A1 - Möglich, A. A1 - Greiner, A. T1 - Investigation of the Thermal Stability of Proteinase K for the Melt Processing of Poly(L‑lactide) N2 - The enzymatic degradation of aliphatic polyesters offers unique opportunities for various use cases in materials science. Although evidently desirable, the implementation of enzymes in technical applications of polyesters is generally challenging due to the thermal lability of enzymes. To prospectively overcome this intrinsic limitation, we here explored the thermal stability of proteinase K at conditions applicable for polymer melt processing, given that this hydrolytic enzyme is well established for its ability to degrade poly(L-lactide) (PLLA). Using assorted spectroscopic methods and enzymatic assays, we investigated the effects of high temperatures on the structure and specific activity of proteinase K. Whereas in solution, irreversible unfolding occurred at temperatures above 75−80 °C, in the dry, bulk state, proteinase K withstood prolonged incubation at elevated temperatures. Unexpectedly little activity loss occurred during incubation at up to 130 °C, and intermediate levels of catalytic activity were preserved at up to 150 °C. The resistance of bulk proteinase K to thermal treatment was slightly enhanced by absorption into polyacrylamide (PAM) particles. Under these conditions, after 5 min at a temperature of 200 °C, which is required for the melt processing of PLLA, proteinase K was not completely denatured but retained around 2% enzymatic activity. Our findings reveal that the thermal processing of proteinase K in the dry state is principally feasible, but equally, they also identify needs and prospects for improvement. The experimental pipeline we establish for proteinase K analysis stands to benefit efforts directed to this end. More broadly, our work sheds light on enzymatically degradable polymers and the thermal processing of enzymes, which are of increasing economical and societal relevance. KW - Enzymatic degradation KW - Poly(L‑lactide) KW - Polyesters KW - biodegradation PY - 2022 DO - https://doi.org/10.1021/acs.biomac.2c01008 SN - 1525-7797 SN - 1526-4602 VL - 23 IS - 11 SP - 4841 EP - 4850 PB - ACS Publications AN - OPUS4-56292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mund, M. A1 - Häßler, Dustin A1 - Schaumann, P. A1 - Hothan, Sascha A1 - Schartel, Bernhard T1 - Experimentelle Untersuchungen zur Dauerhaftigkeit von reaktiven Brandschutzsystemen N2 - Reaktive Brandschutzsysteme finden im baulichen Brandschutz Anwendung zur Erhöhung des Feuerwiderstands von Stahlkonstruktionen. Neben den Anforderungen an die Feuerwiderstandsdauer können damit auch Ansprüche an die Ästhetik erfüllt werden. Die profilfolgende Applikation und die geringen Trockenschichtdicken der Produkte ermöglichen es, das filigrane Erscheinungsbild von Stahlkonstruktionen aufrechtzuerhalten. Neben der thermischen Schutzwirkung muss auch die Dauerhaftigkeit der Brandschutzbeschichtung sichergestellt werden. Die Bewertungsmethoden, die auf europäischer Ebene durch das EAD 350402-00-1106 zur Verfügung stehen, zielen auf eine Nutzungsdauer von zehn Jahren ab. Prüfverfahren für einen darüber hinausgehenden Zeitraum sind nicht beschrieben. In diesem Beitrag werden experimentelle Untersuchungen zum Einfluss der Bewitterung auf das Expansionsverhalten, zur thermischen Schutzwirkung und zu den während des Aufschäumens im Brandfall stattfindenden Reaktionen vorgestellt. Die Versuche wurden an einem wasserbasierten und einem epoxidharzbasierten reaktiven Brandschutzsystem durchgeführt. Die Ergebnisse wurden im Rahmen des IGF-Forschungsvorhabens 20470 N erzielt. KW - Brandschutz KW - Reaktive Brandschutzsysteme KW - Brandversuche KW - Alterung KW - Dauerhaftigkeit PY - 2022 DO - https://doi.org/10.1002/stab.202200063 SN - 0038-9145 VL - 92 IS - 2 SP - 93 EP - 102 PB - Ernst & Sohn CY - Berlin AN - OPUS4-56346 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chan, Yin Y. A1 - Schartel, Bernhard T1 - It takes two to Tango: Industrial Benchmark PU-Foams with expandable Graphite/P-Flame Retardant Combinations N2 - Polyurethane foams (PUF) are generally flammable, so they are limited in some applications due to strict fire safety requirements. In this study, three distinct industrial benchmark polyurethane foams containing synergistic combinations of expandable graphite (EG) and phosphorous flame retardants (P-FR) were investigated one by one for their fire performance and smoke behavior. This paper aims to substantiate the hypothesis that the combination of EG and P-FR used in polyurethane foams yields a top-notch composite in terms of flame retardancy and smoke behavior by meeting the demanding requirement of low maximum average heat emission (MARHE) and smoke emission in a variety of applications, like advanced materials in construction, lightweight materials for railways, and more. KW - Polyurethane foam KW - Expandable graphite KW - Phosphorus flame retardant PY - 2022 SN - 0948-3276 SN - 0022-9520 VL - 75 IS - 6 SP - 39 EP - 46 PB - Hüthig AN - OPUS4-56501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tabaka, Weronika A1 - Meinel, Dietmar A1 - Schartel, Bernhard T1 - Sacrifice Few to Save Many: Fire Protective Interlayers in Carbon- Fiber-Reinforced Laminates N2 - The fire protection of carbon-fiber-reinforced polymer (CFRP) laminates often relies on flame-retardant coatings, but in some applications, their efficacy may diminish upon direct fire exposure due to rapid pyrolysis. This study introduces an innovative approach by integrating protective interlayers within the laminate structure to enhance the fire resistance. Various materials, including ceramic composite WHIPOX, titanium foil, poly(etherimide) (PEI) foil, basalt fibers, rubber mat, and hemp fibers, were selected as protective interlayers. These interlayers were strategically placed within the laminate layout to form a sacrificial barrier, safeguarding the integrity of the composite. Bench-scale fire resistance tests were conducted, where fire (180 kW/m2) was applied directly to the one side of the specimen by a burner while a compressive load was applied at the same time. Results indicate significant prolongation of time to failure for CFRP laminates with protective interlayers, which is up to 10 times longer. This innovative approach represents a potential advance in fire protection strategies for CFRP laminates, offering improved resilience against fire-induced structural failure. KW - Composites in fire KW - Fire resistance KW - Fire retardant interlayers KW - Laminate design KW - Carbon fibre reinforced PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601943 DO - https://doi.org/10.1021/acsomega.4c01408 SN - 2470-1343 VL - 9 IS - 22 SP - 23703 EP - 23712 PB - ACS AN - OPUS4-60194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Size is not all that matters: Residue thickness and protection performance of intumescent coatings made from different binders N2 - In addition to the acid source, charring agent, and blowing agent, the binder is a crucial part of an intumescent coating. Its primary task is to bind all compounds, but it also acts as a carbon source and influences the foaming process. A series of intumescent coatings based on five different binders was investigated in terms of insulation, foaming, mechanical impact resistance, and residue morphology. The Standard Time-Temperature modified Muffle Furnace (STT MuFu+ ) was used for the bench-scale fire resistance tests and provided data on temperature and residue thickness as well as well-defined residues. The residue morphology was analyzed by nondestructive m-computed tomography and scanning electron microscopy. A moderate influence of the binder on insulation performance was detected in the set of coatings investigated, whereas the foaming dynamics and thickness achieved were affected strongly. In addition, the inner structure of the residues showed a rich variety. High expansion alone did not guarantee good insulation. Furthermore, attention was paid to the relation between the microstructure transition induced by carbon loss due to thermo-oxidation of the char and the development of the thermal conductivity and thickness of the coatings during the fire test. KW - Intumescence KW - Morphology analysis KW - Computed tomography KW - Fire resistance KW - Bench-scale fire test KW - Fire protective coating PY - 2017 DO - https://doi.org/10.1177/0734904117709479 SN - 0734-9041 SN - 1530-8049 VL - 35 IS - 4 SP - 284 EP - 302 PB - Sage AN - OPUS4-40766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Variation of intumescent coatings revealing different modes of action for good protection performance N2 - Thermal insulation and mechanical resistance play a crucial role for the performance of an intumescent coating. Both properties depend strongly on the morphology and morphological development of the foamed residue. Small amounts (4 wt%) of fiberglass, clay and a copper salt, respectively, are incorporated into an intumescent coating to study their influence on the morphology and Performance of the residues. The bench scale fire tests were performed on 75 x 75 x 2 mm³ coated steel plates according to the standard time–temperature curve in the Standard Time Temperature Muffle Furnace+ (STT Mufu+). It provided information about foaming dynamics (expansion rates) and thermal insulation. Adding the copper salt halved the expansion height, whereas the clay and fiberglass Change the height of the residue only moderately. The time to reach 500 °C was improved by 31% for clay and 15% for the other two fillers. Nondestructive micro computed tomography is used to assess the inner structure of the residues. A transition of the residue from a black, carbonaceous foam with closed cells into an inorganic, residual open cell sponge occurs at high temperatures. This transition is due to a loss of carbon; the change in microstructure is analyzed by scanning electron microscopy. Additional mechanical tests are performed and interpreted with respect to the results of the morphology analysis. Adding clay or copper salt improved the mechanical resistance tested by a factor 4. The additives significantly influence the thickness and foaming Dynamics as well as the inner structure of the residues, whereas their influence on insulation Performance is moderate. In conclusion, different modes of action are observed to achieve similar insulation performance during the fire test. KW - Intumescence KW - Coating KW - Bench scale fire testing KW - Computed tomography KW - Fire resistance PY - 2017 DO - https://doi.org/10.1007/s10694-017-0649-z SN - 0015-2684 SN - 1572-8099 VL - 53 IS - 4 SP - 1569 EP - 1587 PB - Springer AN - OPUS4-40751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Revealing the inner secrets of intumescence: Advanced standard time temperature oven (STT Mufu+)—my‐computed tomography approach N2 - Intumescent coatings have been used for fire protection of steel for decades, but there is still a need for improvement and adaptation. The key parameters of such coatings in a fire Scenario are thermal insulation, foaming dynamics, and cohesion. The fire resistance tests, large furnaces applying the standard time temperature (STT) curve, demand coated full‐scale components or intermediate‐scale specimen. The STT Mufu+ (standard time temperature muffle furnace+) approach is presented. It is a recently developed bench‐scale testing method to analyze the performance of intumescent coatings. The STT Mufu+ provides vertical testing of specimens with reduced specimen size according to the STT curve. During the experiment, the foaming process is observed with a high‐temperature endoscope. Characteristics of this technique like reproducibility and resolution are presented and discussed. The STT Mufu+ test is highly efficient in comparison to common tests because of the reduced sample size. Its potential is extended to a superior research tool by combining it with advanced residue analysis (μ‐computed tomography and scanning electron microscopy) and mechanical testing. The benefits of this combination are demonstrated by a case study on 4 intumescent coatings. The evaluation of all collected data is used to create performance‐based rankings of the tested coatings. KW - Bench‐scale fire testing KW - Computed tomography KW - Fire resistance KW - Intumescence KW - Residue analysis KW - Standard time temperature furnace PY - 2017 DO - https://doi.org/10.1002/fam.2426 SN - 0308-0501 SN - 1099-1018 VL - 41 IS - 8 SP - 927 EP - 939 PB - Wiley AN - OPUS4-42754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Marti, J.M. A1 - Butler, K.M. A1 - Rossi, R. A1 - Idelsohn, S.R. A1 - Onate, E. A1 - Hofmann-Böllinghaus, Anja T1 - Modelling the vertical UL 94 test: competition and collaboration between melt dripping, gasification and combustion N2 - An experimental and numerical investigation of the effect of bisphenol A bis(diphenyl phosphate) (BDP) and polytetrafluoroethylene (PTFE) on the fire behaviour of bisphenol A polycarbonate/acrylonitrile butadiene styrene (PC/ABS) in the vertical UL 94 scenario is presented. Four PC/ABS blends were discussed, which satisfy different UL 94 classifications due to the competing effects of gasification, charring, flame inhibition and melt flow/dripping. For numerical investigation, the particle finite element method (PFEM) is used. Its capability to model the complex fire behaviour of polymers in the UL 94 is analysed. The materials' properties are characterised, in particular the additives impact on the dripping behaviour during thermal exposure. BDP is an efficient plasticiser; adding PTFE prevents dripping by causing a flow limit. PFEM simulations reproduce the dripping and burning behaviour, in particular the competition between gasification and dripping. The thermal impact of both the burner and the flame is approximated taking into account flame inhibition, charring and effective heat of combustion. PFEM is a promising numerical tool for the investigation of the fire behaviour of polymers, particularly when large deformations are involved. Not only the principal phenomena but also the different UL 94 classifications and the extinction times are well predicted. KW - Melt dripping KW - UL 94 KW - Particle finite element method (PFEM) KW - Simulation KW - Bisphenol A polycarbonate/acrylonitrile butadiene styrene (PC/ABS) KW - Polytetrafluoroethylene (PTFE) KW - Bisphenol A bis(diphenyl phosphate) (BDP) PY - 2015 DO - https://doi.org/10.1002/fam.2257 SN - 0308-0501 SN - 1099-1018 VL - 39 IS - 6 SP - 570 EP - 584 PB - Heyden CY - London AN - OPUS4-34285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fichera, Mario Augusto A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Sturm, Heinz A1 - Knoll, Uta A1 - Jäger, Christian T1 - Solid-state NMR investigations of the pyrolysis and thermo-oxidative decomposition products of a polystyrene/red phosphorus/magnesium hydroxide system N2 - Thermal, thermo-oxidative and fire residues of high impact polystyrene/magnesium hydroxide/red phosphorus (HIPS/Mg(OH)2/Pr) are investigated by solid-state NMR and compared with the results for the binary subsystem Mg(OH)2/Pr. The influences of oxygen, nitrogen and temperature are discussed. For a thermal decomposition and pyrolysis during combustion, the main pyrolysis of HIPS takes place while the remaining residue is a rather intact polymer, with a major share of the embedded Pr still present. Subsequently, mainly amorphous phosphates and a slight amount of crystalline Mg3(PO4)2 and Mg2P2O7 are formed at the highest temperatures. Only with increasing mass loss does the remaining polystyrene structure decompose and graphitic structures occur. The influence of oxygen on the decomposition mechanism is most obvious for the binary system Mg(OH)2/Pr. Pr vanishes more rapidly and crystalline, oxygen-rich magnesium phosphates are formed. In HIPS/Mg(OH)2/Pr systems the polymer acts as a barrier to reaction by the embedded particles, so that major characteristics of an anaerobic decomposition are found. Significant amounts of phosphorus are retained in the condensed phase through a reaction of Pr with Mg(OH)2 to mostly amorphous phosphates. This formation of amorphous inorganic magnesium phosphates can act as an additional physical barrier. This study outlines some advanced approaches for controlling the condensed-phase mechanisms of phosphorus and underlines that solid-state NMR is a most powerful tool for investigating the organic and inorganic residues. KW - HIPS KW - Red phosphorus KW - Magnesium hydroxide KW - Solid-state NMR KW - Flame retarded polymers PY - 2007 SN - 0165-2370 SN - 1873-250X VL - 78 IS - 2 SP - 378 EP - 386 PB - Elsevier CY - Amsterdam AN - OPUS4-14517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goller, Sebastian M. A1 - Schartel, Bernhard A1 - Krüger, Simone T1 - Phosphorus features halogen –calcium hypophosphite replaces antimony trioxide, reduces smoke, and improves flame retardancy N2 - Replacing antimony trioxide (ATO) in flame retardant formulations is an urgent task due to its toxicity. There are indications that calcium hypophosphite (CaP) may be a promising replacement. This study investigates the decomposition, fire behavior, and smoke release of brominated flame-retarded acrylonitrile butadiene styrene (ABS) under various fire scenarios like ignition, developing fire and smoldering, while replacing ATO with CaP and CaP/talc. Adding 4 wt.-% of talc to CaP formulations showed beneficial effects on flammability due to changes in the viscosity and barrier properties. Synergism between 8 wt.-% talc and CaP improved the protective layer in the developing fire scenario, resulting in a ∼60 % decrease in the peak of heat release rate and reduction of ∼21 % in total smoke production (ref. ABS+Br+ATO). With a conventional index of toxicity (CIT) of below 0.75, ABS+Br+CaP passes the highest requirements according to EN 45545-2. Overall, the CaP/talc materials improve flame retardancy, show less smoke emission under forced flaming conditions, and prevent chronic intoxication and environmental pollution through smoke particles contaminated with antimony. KW - Smoke KW - Flame retardancy KW - Acrylonitrile butadiene styrene KW - Calcium hypophosphite KW - Antimony trioxide PY - 2024 DO - https://doi.org/10.1016/j.tca.2024.179764 SN - 0040-6031 VL - 737 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-60063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häßler, Dustin A1 - Mund, Maximilian A1 - Daus, Lars-Hendrik A1 - Hothan, Sascha A1 - Schaumann, Peter A1 - Schartel, Bernhard T1 - Durability of intumescent coatings and recommendations for test concepts for a working life of more than 10 years N2 - It is an essential requirement for all building products to ensure durability of their fire safety. Throughout the working life of products, intumescent coatings are aged by certain climatic factors. To predict a lifetime of several years, generally the behaviour of the intumescent coating is extrapolated based on accelerated artificial ageing. The established German and European procedures to assess the durability assume a working life of at least 10 years. For a longer period, additional evidence is required; yet the procedure and the specifications to justify this are not described. In addition to addressing this formal lack, from a scientific point of view it is necessary to investigate the degradation of intumescent coatings in detail and to propose a reliable test concept to assess durability for more than 10 years. This paper summarises the existing knowledge about the ageing of intumescent coatings. The results of various demanding weathering approaches are presented for two intumescent coatings tested in a joint research project. Moreover, formulations with a reduced amount of functionally relevant components were analysed to gain insight into the associated effects. Derived from these research results and knowledge, recommendations are proposed to assess the durability of intumescent coatings for more than 10 years based on a combination of verifications. KW - Ageing KW - Fire protection KW - Intumescent coating KW - Steel construction KW - Working life PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603852 DO - https://doi.org/10.1016/j.firesaf.2024.104173 SN - 0379-7112 VL - 146 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-60385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Bhatia, Riya A1 - Dey, R. A1 - Falkenhagen, Jana A1 - Ullrich, M. S. A1 - Thomsen, C. A1 - Schartel, Bernhard T1 - Wastewater phosphorus enriched algae as a sustainable flame retardant in polylactide N2 - Revolutionizing our polymer industry for adaption to a sustainable carbon circular economy has become one of today’s most demanding challenges. Exploiting renewable resources to replace fossil-fuel—based plastics with biopolymers such as poly(lactic acid) (PLA) is inevitable while using waste streams as a raw material resource at least is promising. When it comes to using PLA as technical polymer, its high flammability must be addressed by flame retardants compatible with the thermoplastic processing of PLA and its compostability. This study proposes microalgae enriched with phosphorus from wastewater (P-Algae) as an elegant way towards a kind of sustainable organophosphorus flame retardant. The concept is demonstrated by investigating the processing, pyrolysis, flammability, and fire behavior of PLA/P-Algae, while varying the P-Algae content and comparing P-Algae with four alternative bio-fillers (phosphorylated lignin, biochar, thermally treated sewage sludge, and metal phytate) with different P-contents as meaningful benchmarks. KW - PLA KW - Flame Retardancy KW - Phosphorylated Algae KW - Wastewater flame retardants KW - Zink phytate KW - Phosphorylated lignin KW - Thermally treated sludge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604150 DO - https://doi.org/10.1016/j.polymdegradstab.2024.110885 SN - 1873-2321 SN - 0141-3910 VL - 227 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-60415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Inasu, S. A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - A systematic investigation of the transfer of polyphosphate/inorganic silicate flame retardants from epoxy resins to layered glass fiber-reinforced composites and their post-furnace flexural properties N2 - The systematic transfer of solvent-free, additive flame retardant (FR) formulations from epoxy resins to glass fiber-reinforced epoxy composites (GFRECs) through prepregs is difficult. Additionally, obtaining data on their post-fire mechanics is often challenging. Utilizing melamine polyphosphate (MPP), ammonium polyphosphate (APP), and silane-coated ammonium polyphosphate (SiAPP) FRs with low-melting inorganic silicates (InSi) in an 8:2 proportion and 10% loading by weight in a diglycidyl ether of bisphenol A (DGEBA) resin, a systematic investigation of the processing properties, room-temperature mechanics, and temperature-based mechanics of the systems was performed. The resin was cured with a dicyandiamide hardener (DICY) and a urone accelerator. The results revealed no substantial impact of these FRs at the current loading on the resin's glass transition temperature or processability. However, the fire residues from cone calorimetry tests of the composites containing FRs were found to be only 15-20% of the thickness of the resins, implying a suppression of intumescence upon transfer. At room temperature, the decrease in the flexural modulus for the composites containing FRs was negligible. Exposure of the composites in a furnace at 400°C as a preliminary study before ignition tests was shown to cause significant flexural moduli reductions after 2.5 min of exposure and complete delamination after 3 min making further testing unviable. This study emphasizes the need for future research on recovering modes of action upon transfer of FR formulations from resins to composites. Based on the challenges outlined in this investigation, sample adaptation methods for post-fire analysis will be developed in a future study. KW - DGEBA KW - Prepregs KW - Glass fiber-reinforced composites KW - Post-fire testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605239 DO - https://doi.org/10.1002/pc.28416 SN - 1548-0569 SN - 0272-8397 VL - 45 IS - 10 SP - 9389 EP - 9406 PB - Wiley AN - OPUS4-60523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockel, Daniel A1 - Sanchez Olivares, G. A1 - Schartel, Bernhard T1 - Improving the Flame Retardancy of Aluminium Trihydroxide in Thermoplastic Starch Biocomposites Using Waste Fibers and Silicon-Based Synergists N2 - The synergistic behavior of different silicon compounds is investigated in flame retardant biocomposites with aluminum trihydroxide (ATH) as the main flame retardant. The paper shows a new approach towards sustainable biocomposites through the implementation of thermoplastic starch (TPS), leather fibers from industrial waste streams, and non-hazardous flame retardants and synergists. In these multicomponent systems, the different components address different modes of action in the fire scenario. When ATH is partially substituted by glass frits or layered silicates, fire performance is enhanced without changing the total amount of filler in the polymer. In a biocomposite with 25 phr of fiber and 90 phr of ATH, substituting 5 phr of ATH for layered silicates increased the LOI from 31.5 vol % to 34.8 vol %, decreased the peak of heat release by 20%, and increased the UL 94 rating from V-1 to V-0. KW - Biocomposites KW - Sustainability KW - Waste streams KW - Flame retardancy KW - Synergism KW - Modes of action PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605711 DO - https://doi.org/10.1021/acssusresmgt.4c00053 SN - 2837-1445 VL - 1 IS - 6 SP - 1131 EP - 1145 PB - ACS AN - OPUS4-60571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -