TY - JOUR A1 - Morys, Michael A1 - Illerhaus, Bernhard A1 - Sturm, Heinz A1 - Schartel, Bernhard T1 - Revealing the inner secrets of intumescence: Advanced standard time temperature oven (STT Mufu+)—my‐computed tomography approach N2 - Intumescent coatings have been used for fire protection of steel for decades, but there is still a need for improvement and adaptation. The key parameters of such coatings in a fire Scenario are thermal insulation, foaming dynamics, and cohesion. The fire resistance tests, large furnaces applying the standard time temperature (STT) curve, demand coated full‐scale components or intermediate‐scale specimen. The STT Mufu+ (standard time temperature muffle furnace+) approach is presented. It is a recently developed bench‐scale testing method to analyze the performance of intumescent coatings. The STT Mufu+ provides vertical testing of specimens with reduced specimen size according to the STT curve. During the experiment, the foaming process is observed with a high‐temperature endoscope. Characteristics of this technique like reproducibility and resolution are presented and discussed. The STT Mufu+ test is highly efficient in comparison to common tests because of the reduced sample size. Its potential is extended to a superior research tool by combining it with advanced residue analysis (μ‐computed tomography and scanning electron microscopy) and mechanical testing. The benefits of this combination are demonstrated by a case study on 4 intumescent coatings. The evaluation of all collected data is used to create performance‐based rankings of the tested coatings. KW - Bench‐scale fire testing KW - Computed tomography KW - Fire resistance KW - Intumescence KW - Residue analysis KW - Standard time temperature furnace PY - 2017 DO - https://doi.org/10.1002/fam.2426 SN - 0308-0501 SN - 1099-1018 VL - 41 IS - 8 SP - 927 EP - 939 PB - Wiley AN - OPUS4-42754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempel, Florian A1 - Schartel, Bernhard A1 - Marti, J.M. A1 - Butler, K.M. A1 - Rossi, R. A1 - Idelsohn, S.R. A1 - Onate, E. A1 - Hofmann-Böllinghaus, Anja T1 - Modelling the vertical UL 94 test: competition and collaboration between melt dripping, gasification and combustion N2 - An experimental and numerical investigation of the effect of bisphenol A bis(diphenyl phosphate) (BDP) and polytetrafluoroethylene (PTFE) on the fire behaviour of bisphenol A polycarbonate/acrylonitrile butadiene styrene (PC/ABS) in the vertical UL 94 scenario is presented. Four PC/ABS blends were discussed, which satisfy different UL 94 classifications due to the competing effects of gasification, charring, flame inhibition and melt flow/dripping. For numerical investigation, the particle finite element method (PFEM) is used. Its capability to model the complex fire behaviour of polymers in the UL 94 is analysed. The materials' properties are characterised, in particular the additives impact on the dripping behaviour during thermal exposure. BDP is an efficient plasticiser; adding PTFE prevents dripping by causing a flow limit. PFEM simulations reproduce the dripping and burning behaviour, in particular the competition between gasification and dripping. The thermal impact of both the burner and the flame is approximated taking into account flame inhibition, charring and effective heat of combustion. PFEM is a promising numerical tool for the investigation of the fire behaviour of polymers, particularly when large deformations are involved. Not only the principal phenomena but also the different UL 94 classifications and the extinction times are well predicted. KW - Melt dripping KW - UL 94 KW - Particle finite element method (PFEM) KW - Simulation KW - Bisphenol A polycarbonate/acrylonitrile butadiene styrene (PC/ABS) KW - Polytetrafluoroethylene (PTFE) KW - Bisphenol A bis(diphenyl phosphate) (BDP) PY - 2015 DO - https://doi.org/10.1002/fam.2257 SN - 0308-0501 SN - 1099-1018 VL - 39 IS - 6 SP - 570 EP - 584 PB - Heyden CY - London AN - OPUS4-34285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fichera, Mario Augusto A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Sturm, Heinz A1 - Knoll, Uta A1 - Jäger, Christian T1 - Solid-state NMR investigations of the pyrolysis and thermo-oxidative decomposition products of a polystyrene/red phosphorus/magnesium hydroxide system N2 - Thermal, thermo-oxidative and fire residues of high impact polystyrene/magnesium hydroxide/red phosphorus (HIPS/Mg(OH)2/Pr) are investigated by solid-state NMR and compared with the results for the binary subsystem Mg(OH)2/Pr. The influences of oxygen, nitrogen and temperature are discussed. For a thermal decomposition and pyrolysis during combustion, the main pyrolysis of HIPS takes place while the remaining residue is a rather intact polymer, with a major share of the embedded Pr still present. Subsequently, mainly amorphous phosphates and a slight amount of crystalline Mg3(PO4)2 and Mg2P2O7 are formed at the highest temperatures. Only with increasing mass loss does the remaining polystyrene structure decompose and graphitic structures occur. The influence of oxygen on the decomposition mechanism is most obvious for the binary system Mg(OH)2/Pr. Pr vanishes more rapidly and crystalline, oxygen-rich magnesium phosphates are formed. In HIPS/Mg(OH)2/Pr systems the polymer acts as a barrier to reaction by the embedded particles, so that major characteristics of an anaerobic decomposition are found. Significant amounts of phosphorus are retained in the condensed phase through a reaction of Pr with Mg(OH)2 to mostly amorphous phosphates. This formation of amorphous inorganic magnesium phosphates can act as an additional physical barrier. This study outlines some advanced approaches for controlling the condensed-phase mechanisms of phosphorus and underlines that solid-state NMR is a most powerful tool for investigating the organic and inorganic residues. KW - HIPS KW - Red phosphorus KW - Magnesium hydroxide KW - Solid-state NMR KW - Flame retarded polymers PY - 2007 SN - 0165-2370 SN - 1873-250X VL - 78 IS - 2 SP - 378 EP - 386 PB - Elsevier CY - Amsterdam AN - OPUS4-14517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goller, Sebastian M. A1 - Schartel, Bernhard A1 - Krüger, Simone T1 - Phosphorus features halogen –calcium hypophosphite replaces antimony trioxide, reduces smoke, and improves flame retardancy N2 - Replacing antimony trioxide (ATO) in flame retardant formulations is an urgent task due to its toxicity. There are indications that calcium hypophosphite (CaP) may be a promising replacement. This study investigates the decomposition, fire behavior, and smoke release of brominated flame-retarded acrylonitrile butadiene styrene (ABS) under various fire scenarios like ignition, developing fire and smoldering, while replacing ATO with CaP and CaP/talc. Adding 4 wt.-% of talc to CaP formulations showed beneficial effects on flammability due to changes in the viscosity and barrier properties. Synergism between 8 wt.-% talc and CaP improved the protective layer in the developing fire scenario, resulting in a ∼60 % decrease in the peak of heat release rate and reduction of ∼21 % in total smoke production (ref. ABS+Br+ATO). With a conventional index of toxicity (CIT) of below 0.75, ABS+Br+CaP passes the highest requirements according to EN 45545-2. Overall, the CaP/talc materials improve flame retardancy, show less smoke emission under forced flaming conditions, and prevent chronic intoxication and environmental pollution through smoke particles contaminated with antimony. KW - Smoke KW - Flame retardancy KW - Acrylonitrile butadiene styrene KW - Calcium hypophosphite KW - Antimony trioxide PY - 2024 DO - https://doi.org/10.1016/j.tca.2024.179764 SN - 0040-6031 VL - 737 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-60063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häßler, Dustin A1 - Mund, Maximilian A1 - Daus, Lars-Hendrik A1 - Hothan, Sascha A1 - Schaumann, Peter A1 - Schartel, Bernhard T1 - Durability of intumescent coatings and recommendations for test concepts for a working life of more than 10 years N2 - It is an essential requirement for all building products to ensure durability of their fire safety. Throughout the working life of products, intumescent coatings are aged by certain climatic factors. To predict a lifetime of several years, generally the behaviour of the intumescent coating is extrapolated based on accelerated artificial ageing. The established German and European procedures to assess the durability assume a working life of at least 10 years. For a longer period, additional evidence is required; yet the procedure and the specifications to justify this are not described. In addition to addressing this formal lack, from a scientific point of view it is necessary to investigate the degradation of intumescent coatings in detail and to propose a reliable test concept to assess durability for more than 10 years. This paper summarises the existing knowledge about the ageing of intumescent coatings. The results of various demanding weathering approaches are presented for two intumescent coatings tested in a joint research project. Moreover, formulations with a reduced amount of functionally relevant components were analysed to gain insight into the associated effects. Derived from these research results and knowledge, recommendations are proposed to assess the durability of intumescent coatings for more than 10 years based on a combination of verifications. KW - Ageing KW - Fire protection KW - Intumescent coating KW - Steel construction KW - Working life PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603852 DO - https://doi.org/10.1016/j.firesaf.2024.104173 SN - 0379-7112 VL - 146 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-60385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Bhatia, Riya A1 - Dey, R. A1 - Falkenhagen, Jana A1 - Ullrich, M. S. A1 - Thomsen, C. A1 - Schartel, Bernhard T1 - Wastewater phosphorus enriched algae as a sustainable flame retardant in polylactide N2 - Revolutionizing our polymer industry for adaption to a sustainable carbon circular economy has become one of today’s most demanding challenges. Exploiting renewable resources to replace fossil-fuel—based plastics with biopolymers such as poly(lactic acid) (PLA) is inevitable while using waste streams as a raw material resource at least is promising. When it comes to using PLA as technical polymer, its high flammability must be addressed by flame retardants compatible with the thermoplastic processing of PLA and its compostability. This study proposes microalgae enriched with phosphorus from wastewater (P-Algae) as an elegant way towards a kind of sustainable organophosphorus flame retardant. The concept is demonstrated by investigating the processing, pyrolysis, flammability, and fire behavior of PLA/P-Algae, while varying the P-Algae content and comparing P-Algae with four alternative bio-fillers (phosphorylated lignin, biochar, thermally treated sewage sludge, and metal phytate) with different P-contents as meaningful benchmarks. KW - PLA KW - Flame Retardancy KW - Phosphorylated Algae KW - Wastewater flame retardants KW - Zink phytate KW - Phosphorylated lignin KW - Thermally treated sludge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604150 DO - https://doi.org/10.1016/j.polymdegradstab.2024.110885 SN - 1873-2321 SN - 0141-3910 VL - 227 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-60415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sunder, S. A1 - Jauregui Rozo, Maria A1 - Inasu, S. A1 - Schartel, Bernhard A1 - Ruckdäschel, H. T1 - A systematic investigation of the transfer of polyphosphate/inorganic silicate flame retardants from epoxy resins to layered glass fiber-reinforced composites and their post-furnace flexural properties N2 - The systematic transfer of solvent-free, additive flame retardant (FR) formulations from epoxy resins to glass fiber-reinforced epoxy composites (GFRECs) through prepregs is difficult. Additionally, obtaining data on their post-fire mechanics is often challenging. Utilizing melamine polyphosphate (MPP), ammonium polyphosphate (APP), and silane-coated ammonium polyphosphate (SiAPP) FRs with low-melting inorganic silicates (InSi) in an 8:2 proportion and 10% loading by weight in a diglycidyl ether of bisphenol A (DGEBA) resin, a systematic investigation of the processing properties, room-temperature mechanics, and temperature-based mechanics of the systems was performed. The resin was cured with a dicyandiamide hardener (DICY) and a urone accelerator. The results revealed no substantial impact of these FRs at the current loading on the resin's glass transition temperature or processability. However, the fire residues from cone calorimetry tests of the composites containing FRs were found to be only 15-20% of the thickness of the resins, implying a suppression of intumescence upon transfer. At room temperature, the decrease in the flexural modulus for the composites containing FRs was negligible. Exposure of the composites in a furnace at 400°C as a preliminary study before ignition tests was shown to cause significant flexural moduli reductions after 2.5 min of exposure and complete delamination after 3 min making further testing unviable. This study emphasizes the need for future research on recovering modes of action upon transfer of FR formulations from resins to composites. Based on the challenges outlined in this investigation, sample adaptation methods for post-fire analysis will be developed in a future study. KW - DGEBA KW - Prepregs KW - Glass fiber-reinforced composites KW - Post-fire testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605239 DO - https://doi.org/10.1002/pc.28416 SN - 1548-0569 SN - 0272-8397 VL - 45 IS - 10 SP - 9389 EP - 9406 PB - Wiley AN - OPUS4-60523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -