TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Hennecke, Manfred A1 - Kettner, A. A1 - Wendorff, J. H. T1 - On the thermal behaviour and thermo-oxidative stability of liquid crystalline triphenylene compounds N2 - Columnar discotic materials are considered for applications in the area of photoconductivity and light-emitting diodes. A major requirement is their stability at elevated temperatures and in the presence of oxygen. The thermal and thermo-oxidative behaviour of discotic triphenylene derivatives was investigated by us using various methods, in particular by chemiluminescence (CL), UV-vis absorption spectroscopy and in situ thermogravimetry-mass spectroscopy (TG-MS). Various degradation processes are described for increasing temperature, and their influences on functional properties are discussed. KW - Liquid crystal KW - Oxidation KW - Thermogravimetry PY - 1999 DO - https://doi.org/10.1002/(SICI)1099-0712(199903/04)9:2<55::AID-AMO366>3.3.CO;2-R SN - 1057-9257 SN - 1099-0712 VL - 9 IS - 2 SP - 55 EP - 64 PB - Wiley CY - Chichester AN - OPUS4-732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Damerau, Thomas A1 - Hennecke, Manfred T1 - Photo- and thermo-oxidative stability of aromatic spiro-linked bichromophoric cross-shaped molecules N2 - An extensive investigation of the photostability and the thermo-oxidative stability is presented for 2,2,7,7-tetrakis(biphenyl-4-yl)-9,9-spirobifluorene and 2,2,4,4,7,7-hexakis(biphenyl-4-yl)-9,9-spirobifluorene. Both compounds are conjugated fully aromatic systems that are being discussed as active functional materials for a variety of advanced applications. The effect of atmosphere, sample thickness and preparation procedure on photo-oxidative degradation are investigated in detail by absorption and fluorescence spectroscopy. Distinct mechanisms are described in terms of relevant parameters such as the quantum yields of the photo-oxidation and the fluorescence. No oxidative degradation could be detected under nitrogen. In ambient air a strong decrease of the fluorescence performance is found due to effective quenching by defective chromophores. Chemiluminescence investigations were performed to characterise the thermo-oxidative behaviour in the temperature region between 300 and 450 K. It becomes clear that even a stable chemical structure such as the investigated aromatic system does not guarantee sufficient photostability with regard to light emitting properties. About this Journal PY - 2000 DO - https://doi.org/10.1039/b004931j SN - 1463-9076 SN - 1463-9084 VL - 2 IS - 20 SP - 4690 EP - 4696 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-1002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar T1 - Red Phosphorus-Controlled Decomposition for Fire Retardant PA 66 N2 - The thermal degradation and the combustion behavior of glass fiber-reinforced PA 66 materials containing red phosphorus were investigated. Thermogravimetry (TG), TG coupled with FTIR, and TG coupled with mass spectroscopy were used to investigate the thermal decomposition. The flame retardant red phosphorus was investigated with respect to the decomposition kinetics and the release of volatile products. The combustion behavior was characterized using a cone calorimeter. Fire risks and fire hazards were monitored versus external heat fluxes between 30 and 75 kW/m2. Red phosphorus acts in the solid phase and its efficiency depends on the external heat flux. The use of red phosphorus results in an increased amount of residue and in a corresponding decrease in total heat release. The decrease of the mass loss rate peak results in a corresponding decrease of the peak heat release. With increasing external heat flux applied the first effect on the total heat release decreases linearly, whereas the second effect on the peak heat release expands linearly. The investigation provides insight into the mechanisms of how the fire retardant PA 66 is achieved by red phosphorus controlling the degradation kinetics. Taking into account that a decrease of the volatile products also leads to a decrease of heat production in the flame zone and that the char acts as heat transfer barrier, a reduced pyrolysis temperature is suggested as a further feedback effect. T2 - 8th European Conference on fire retardant polymers CY - Alessandria, Italy DA - 2001-06-24 KW - PA 66 KW - Red phosphorus KW - Fire retardancy KW - TG-FTIR KW - Cone calorimeter PY - 2002 DO - https://doi.org/10.1002/app.10144 SN - 0021-8995 SN - 1097-4628 VL - 83 IS - 10 SP - 2060 EP - 2071 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-1234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar A1 - Tidjani, Adams T1 - ZnS as fire retardant in plasticised PVC N2 - The flame retardant effect of zinc sulphide (ZnS) in plasticised poly(vinyl chloride) (PVC-P) materials was investigated. PVC-P containing different combinations of additives such as 5% ZnS, 5% of antimony oxide (Sb2O3) and 5% of mixtures based on Sb2O3 and ZnS were compared. The thermal degradation and the combustion behaviour were studied using thermogravimetry (TG), coupled with FTIR (TG-FTIR) or with mass spectroscopy (TG-MS), and a cone calorimeter, respectively. A detailed and unambiguous understanding of the decomposition and release of the pyrolysis products was obtained using both TG-MS and TG-FTIR. The influence of ZnS, Sb2O3 and the corresponding mixtures on the thermal decomposition of PVC-P was demonstrated. Synergism was observed for the combination of the two additives. The combustion behaviour (time to ignition, heat release, smoke production, mass loss, CO production) was monitored versus external heat fluxes between 30 and 75 kW m-2 with the cone calorimeter. Adding 5% of ZnS has no significant influence on the fire behaviour of PVC-P materials beyond a dilution effect, whereas Sb2O3 works as an effective fire retardant. Synergism of ZnS and Sb2O3 allows the possibility of replacing half of Sb2O3 by ZnS to reach equivalent fire retardancy. KW - PVC KW - ZnS KW - Fire retardancy KW - TG-FTIR KW - Cone calorimeter PY - 2002 DO - https://doi.org/10.1002/pi.845 SN - 0959-8103 SN - 1097-0126 SN - 0007-1641 VL - 51 IS - 3 SP - 213 EP - 222 PB - Wiley InterScience CY - Chichester, West Sussex AN - OPUS4-1291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Hennecke, Manfred T1 - Thermo-oxidative stability of a conjugated polymer by chemiluminescence N2 - Conjugated polymers based on 1,4-phenylenevinylene units are very promising materials for applications as light-emitting diodes. A major requirement is their stability at elevated temperatures of operation. The thermo-oxidative behaviour of a soluble poly(1,4-phenylenevinylene) derivative, poly[2,5-bis(2-ethylhexyloxy)-1,4-phenylene vinylene], was investigated by using chemiluminescence and UV–Vis absorption spectroscopy. Extremely sensitive chemiluminescence is successfully applied since even minor chemical changes could lead to a considerable loss of photo- and electro-optical properties. Various degradation processes are described as a function of time and temperature and their influences on functional properties are discussed. The investigated material does not show sufficient thermo-oxidative stability within the temperature range of intended use in contact with air. For industrial application, direct contact with oxygen during processing and operation has to be avoided. KW - Chemiluminescence KW - Conjugated polymer KW - Thermal-oxidation KW - Stability PY - 2000 DO - https://doi.org/10.1016/S0141-3910(99)00120-2 SN - 0141-3910 SN - 1873-2321 VL - 67 IS - 2 SP - 249 EP - 253 PB - Applied Science Publ. CY - London AN - OPUS4-853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Excitation energy transfer of a bichromophoric cross-shaped molecule investigated by polarized fluorescence spectroscopy N2 - The excitation energy transfer (EET) of a bichromophoric cross-shaped molecule was investigated by stationary polarized fluorescence spectroscopy in the solid state. For this purpose 2,2[prime],7,7[prime]-tetrakis(biphenyl-4-yl)-9,9[prime]-spirobifluorene was embedded in a polymeric bisphenol-A-polycarbonate (PC) matrix. The dependence of the fluorescence on concentration and wavelength was determined. The role of the intermolecular and intramolecular EET is dealt with separately and discussed by means of the degree of polarization. The intermolecular excitation energy transfer is described in terms of a Förster transfer mechanism. The intramolecular transfer is prevented for the zero-point vibrational levels by the molecular cross-shaped structure, but is found for a wide range of wavelength, presumably based on vibrationally excited states. PY - 2000 DO - https://doi.org/10.1063/1.481620 SN - 0021-9606 SN - 1089-7690 VL - 112 IS - 22 SP - 9822 EP - 9827 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-1038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Hennecke, Manfred T1 - Chemiluminescence: A promising new testing method for plastic optical fibers N2 - The thermo-oxidative degradation of a polymeric optical cable is investigated by chemiluminescence, The results are reliable and reproducible. Two distinct processes are reported marked by a peak and a plateau behavior versus the time, respectively. Both processes are ruled by thermally activated processes. Beside the dependencies of temperature and time, the influence of absorbed water is discussed. Chemiluminescence is proposed as a promising candidate for a suitable testing method assessing the thermo-oxidative stability of plastic optical fibers and cables. it requires not more than a simple one-day testing procedure and has the advantage that it can be carried out even within the lo cv temperature ranges of the cables' intended use. KW - Chemiluminescence KW - Chemilumineszenz PY - 1999 DO - https://doi.org/10.1109/50.803022 SN - 0733-8724 SN - 1558-2213 VL - 17 IS - 11 SP - 2291 EP - 2296 PB - Institute of Electrical and Electronics Engineers CY - New York, NY AN - OPUS4-718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, Birgit A1 - Schartel, Bernhard T1 - TGA-FTIR: Détermination des mécanismes ignifuges par l´étude de la pyrolyse KW - TGA-FTIR KW - Flammschutz KW - Pyrolyse PY - 2010 VL - 32 SP - 16 EP - 19 AN - OPUS4-23906 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, D. A1 - Kleemeier, M. A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Liu, W.Q. A1 - Hartwig, A. T1 - Phosphorus and silicon containing low-melting organic-inorganic glasses improve flame retardancy of epoxy/clay composites N2 - New low-melting organic–inorganic glassy polymers containing phosphorus and silicon are synthesized by the reaction between phenylphosphonic acid and methyltrichlorosilane or methyltriethoxysilane. They possess both low-softening points and high onset decomposition temperatures, which are favorable for preparing flame retardant composites. Although the glass by itself is sensitive to water, the composites are not significantly affected in that way. For glass/clay/epoxy composites glass transition temperature (Tg) as well as storage modulus increase with the glass amount. The glasses improve flame retardancy significantly due to flame inhibition and the formation of fire residue working as protection layer during burning. The total heat evolved is reduced by 23–28% for using 5–15 wt.% glass and the maximum HRR even by 58–48%. The latter effect decreases with increasing glass amount due to an adulterate residue deformation. The combination of glass and clay is proposed as a possible route to enhance flame retardancy. KW - Clay KW - Epoxy resin KW - Flame retardancy KW - Organic-inorganic polymer KW - Low-melting glass PY - 2011 DO - https://doi.org/10.1002/mame.201100014 SN - 1438-7492 SN - 1439-2054 VL - 296 IS - 10 SP - 952 EP - 964 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-24516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, D. A1 - Kleemeier, M. A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Liu, W.Q. A1 - Hartwig, A. T1 - The absence of size- dependency in flame retarded composites containing low-melting organic-inorganic glass and clay: Comparison between micro- and nanocomposites N2 - Due to optimised processing of epoxy based composite materials containing a low-melting organic–inorganic glass together with an organo clay, the size of the glass particles could be successfully reduced. Thus truly nano-dispersed composites were obtained, with glass particles in the range of 10 nm to 200 nm. The small particle size allowed efficient interaction of glass particles and organo clay layers. The flame retardancy as well as the thermo-mechanical properties were tested, and the results showed that the low-melting glass led to a remarkable reduction of peak heat release rate by forming an enhanced barrier layer. Nevertheless no further improvement could be achieved by lowering the particle size to the nanometre region. For good flame retardancy a microdispersion of the low-melting glass was already sufficient. KW - Epoxy resin KW - Nanocomposites KW - Low-melting glass KW - Clay KW - Flame retardancy PY - 2011 DO - https://doi.org/10.1016/j.polymdegradstab.2011.06.003 SN - 0141-3910 SN - 1873-2321 VL - 96 IS - 9 SP - 1616 EP - 1624 PB - Elsevier Ltd. CY - London AN - OPUS4-24211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -