TY - JOUR A1 - Darlatt, Erik A1 - Traulsen, C.H.-H. A1 - Poppenberg, J. A1 - Richter, S. A1 - Kühn, Julius A1 - Schalley, C.A. A1 - Unger, Wolfgang T1 - Evidence of click and coordination reactions on a self-assembled monolayer by synchrotron radiation based XPS and NEXAFS N2 - An ethynylterpyridine was 'clicked' to an azide-terminated self-assembled monolayer on gold and characterized by synchrotron radiation based surface analysis as NEXAFS and XPS. The detection of azide and terpyridine signatures confirmed a partial click reaction at room temperature. The absence of the azides after reaction at 50 °C indicates an almost complete conversion. For the latter case successful Pd(II) coordination has been proven. The Au–S interface of the SAMs has been characterized by S 1s and S 2p XPS. KW - Synchrotron radiation XPS KW - NEXAFS spectroscopy KW - Surface click chemistry KW - Self-assembled monolayer KW - HAXPES KW - XANES PY - 2012 U6 - https://doi.org/10.1016/j.elspec.2012.02.004 SN - 0368-2048 SN - 1873-2526 VL - 185 IS - 3-4 SP - 85 EP - 89 PB - Elsevier CY - Amsterdam AN - OPUS4-25596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poppenberg, J. A1 - Richter, S. A1 - Darlatt, Erik A1 - Traulsen, C.H.-H. A1 - Min, Hyegeun A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Successive coordination of palladium(II)-ions and terpyridine-ligands to a pyridyl-terminated self-assembled monolayer on gold N2 - The deposition of palladium on a novel, reversibly protonatable, pyridyl-terminated self-assembled monolayer on gold substrates has been studied by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS spectroscopy) and time of flight-secondary ion mass spectrometry (ToF-SIMS). For this purpose, 12-(pyridin-4-yl)dodecane-1-thiol, consisting of a surface-active head group, an unfunctionalized hydrocarbon backbone and a terminal pyridyl group, has been synthesized and deposited on gold surfaces. Coordination of Pd(II) ions to the pyridyl group was examined. Furthermore, a reversible protonation/deprotonation cycle has been applied, and the relation between protonation and the amount of complexed palladium was studied. Investigation of the SAM by angle-resolved NEXAFS spectroscopy revealed the aliphatic backbone to be preferentially upright oriented with the aromatic head group being not preferentially oriented. The palladium layer was further coordinated with a CF3-labeled terpyridine ligand in order to prove the accessibility of the Pd(II) ions to further complexation and the platform useful for deposition of further layers toward a multi-layered system. KW - Supramolecular surface chemistry KW - Pyridine terminated monolayer KW - NEXAFS spectroscopy KW - ToF-SIMS KW - Pyridine-metal coordination PY - 2012 U6 - https://doi.org/10.1016/j.susc.2011.10.020 SN - 0039-6028 VL - 606 IS - 3-4 SP - 367 EP - 377 PB - Elsevier CY - Amsterdam AN - OPUS4-25282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darlatt, Erik A1 - Nefedov, A. A1 - Traulsen, C.H.-H. A1 - Poppenberg, J. A1 - Richter, S. A1 - Dietrich, Paul A1 - Lippitz, Andreas A1 - Illgen, René A1 - Kühn, Julius A1 - Schalley, C.A. A1 - Wöll, Ch. A1 - Unger, Wolfgang T1 - Interperetation of experimental N K NEXAFS of azide, 1,2,3-triazole and terpyridyl groups by DFT spectrum simulations N2 - Experimental N K-edge NEXAFS data of surface immobilized azide, 1,2,3-triazole and terpyridyl groups are interpreted with the help of DFT spectrum simulations. Assignments of π* resonances in experimental N K-edge NEXAFS spectra to nitrogen atoms within these functional groups have been made. The azide was immobilized on gold as the head group of a thiol SAM, 1,2,3-triazole was formed on this SAM by click reaction and terpyridyl groups were introduced as substituents of the acetylene used for the click reaction. For azide-terminated molecules, DFT spectrum simulations are found to be useful to find measurement conditions delivering experimental N K-edge NEXAFS data with negligible X-ray damage. The 1,2,3-triazole group is found to be rather stable under X-ray irradiation. KW - N K-edge NEXAFS KW - XANES KW - Surface click chemistry KW - Density functional theory KW - Azide KW - 1,2,3-Triazole PY - 2012 U6 - https://doi.org/10.1016/j.elspec.2012.09.008 SN - 0368-2048 SN - 1873-2526 VL - 185 IS - 12 SP - 621 EP - 624 PB - Elsevier CY - Amsterdam AN - OPUS4-27774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poppenberg, J. A1 - Richter, S. A1 - Traulsen, C.H.-H. A1 - Darlatt, Erik A1 - Baytekin, B. A1 - Heinrich, T. A1 - Deutinger, P.M. A1 - Huth, K. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Programmable multilayers of nanometer-sized macrocycles on solid support and stimuli-controlled on-surface pseudorotaxane formation N2 - Mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes are capable of mechanical motion on the nanoscale and are therefore promising prototypes for molecular machines in recent nanotechnology. However, most of the existing examples are isotropically distributed in solution, which prohibits concerted movement and with it the generation of macroscopic effects. Thus, arranging them in ordered arrays is of huge interest in recent research. We report the deposition of quite densely packed multilayers of tetralactam macrocycles on gold surfaces by metal-coordinated layer-by-layer self-assembly. Linear dichroism effects in angle-resolved NEXAFS spectra indicate a preferential orientation of the macrocycles. The sequence of the metal ions can be programmed by the use of different transition metal ions at each deposition step. Additionally, reversible on-surface pseudorotaxane formation was successfully realized by repeated uptake and release of axle molecules inside the macrocycles cavities. KW - ISO KW - Standard KW - Surface analysis KW - Imaging PY - 2013 U6 - https://doi.org/10.1039/c3sc50558h SN - 2041-6520 SN - 2041-6539 VL - 4 SP - 3131 EP - 3139 PB - RSC CY - Cambridge AN - OPUS4-29049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baytekin, H.T. A1 - Baytekin, B. A1 - Schulz, a. A1 - Springer, A. A1 - Gross, Thomas A1 - Unger, Wolfgang A1 - Artamonova, M. A1 - Schlecht, S. A1 - Lentz, D. A1 - Schalley, C.A. T1 - Metallo-supramolecular nanospheres via hierarchical self-assembly N2 - A novel coordination oligo/polymer is synthesized by metal-directed self-assembly from equimolar amounts of the (dppp)M(OTf)2 precursor complexes (dppp = bis-(diphenylphosphino)-propane, OTf = triflate; M = PdII or M = PtII) and banana-shaped bidentate dipyridyl ligands. The assemblies were characterized by ESI mass spectrometry and NMR spectroscopy. The analysis of the cloudy suspension prepared by dissolving the coordination polymer in aqueous methanol solutions indicates nanosized spherical objects to form. Evidence for vesicle formation from these metallo-supramolecular oligomers comes from (cryogenic) transmission electron microscopy (TEM, cryo-TEM). Atomic force microscopy revealed stable nanospheres on hydrophilic mica and monolayer formation on hydrophobic highly oriented pyrolitic graphite (HOPG) substrates. On mica, also torus-shaped object were observed, which are rationalized by vesicles that opened during the drying procedure and released the internal solvent. Elemental analysis of the nanoassemblies by X-ray photoelectron spectroscopy (XPS) indicates uncoordinated and coordinated pyridines in the coordination polymers that form the nanospheres. Various control experiments using different metal centers and modified ligands support the conclusions. KW - Self-assembly KW - Metallo-supramolecular chemistry KW - Coordination polymers KW - Vesicles KW - Electron microscopy KW - Nano-materials PY - 2009 U6 - https://doi.org/10.1021/cm900642p SN - 0897-4756 SN - 1520-5002 VL - 21 IS - 13 SP - 2980 EP - 2992 PB - American Chemical Society CY - Washington, DC AN - OPUS4-19638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, S. A1 - Poppenberg, J. A1 - Traulsen, C.H.-H. A1 - Darlatt, Erik A1 - Sokolowski, A. A1 - Sattler, D. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Deposition of ordered layers of tetralactam macrocycles and ether rotaxanes on pyridine-terminated self-assembled monolayers on gold N2 - The deposition of tetralactam macrocycles and the corresponding benzyl ether rotaxanes on gold substrates is investigated for the first time exploiting metallo-supramolecular chemistry. Two pyridine-terminated self-assembled monolayers (SAMs) are developed that are used as well-ordered template layers. The two SAMs differ with respect to the rigidity of the terminal pyridines as shown by angle-resolved near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The template layers are then used for the metal-mediated self-assembly of macrocylces and rotaxanes on solid supports. The SAM with the more rigid terminal pyridine shows a higher coverage with the macrocycles and is therefore preferable. Angle-resolved NEXAFS spectroscopy also shows the deposited supramolecules to be oriented preferentially upright. This order is only achieved for the macrocycles through the deposition on the more rigid SAM template, whereas rotaxanes form oriented layers on both SAMs. Time-of-flight secondary-ion mass spectrometry analysis was used to determine the deposition time required for the self-assembly process. PY - 2012 U6 - https://doi.org/10.1021/ja306212m SN - 0002-7863 SN - 1520-5126 VL - 134 IS - 39 SP - 16289 EP - 16297 PB - American Chemical Society CY - Washington, DC AN - OPUS4-26740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Traulsen, C.H.-H. A1 - Darlatt, Erik A1 - Richter, S. A1 - Poppenberg, J. A1 - Hoof, S. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Intermixed terpyridine-functionalized monolayers on gold: nonlinear relationship between terpyridyl density and metal ion coordination properties N2 - Aiming at the functionalization of surfaces with terpyridine anchors for the coordinative deposition of additional layers, mixed self-assembled monolayers (SAMs) were prepared from binary solutions of 12-(2,2':6',2''-terpyridine-4'-yl)dodecane-1-thiol (TDT) and 1-decanethiol (DT). The SAMs and the order of the constituting molecules were analyzed by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and time-of-flight-secondary ion mass spectrometry (ToF-SIMS). The composition of the (TDT/DT)-SAMs and with it the surface density of terpyridyl groups correlates linearly with the relative concentrations of the two compounds in the solution used for depositing them. In marked contrast, the amount of terpyridine-coordinated PdII ions significantly deviates from this trend with an optimum at a 1:3 ratio of TDT/DT. This indicates a major fraction of the terpyridines in TDT-rich SAMs not to be accessible for PdII ion coordination. In agreement, NEXAFS spectroscopy reveals the alkyl backbones in TDT-rich SAMs not to be ordered, while they are preferentially upright oriented in the optimal 1:3-(TDT/DT)-SAMs. We interpret this in terms of terpyridine backfolding in TDT-rich SAMs, while they are located in accessible positions on top of the SAM in the 1:3-(TDT/DT)-SAM. While the alkyl backbones in the 1:3-(TDT/DT)-SAM are ordered, NEXAFS spectroscopy shows the terpyridyl groups not to have a preferential orientation in this SAM and thus retain enough flexibility to adjust to molecules that are deposited on top of the mixed SAM. In conclusion, the novel SAM does not undergo phase separation and consists predominantly of intermixed phases with adjustable surface density of quite flexible terpyridine anchor groups. The terpyridine–PdII anchors are not only available for a future deposition of the next layer, but the metal ions also represent a sensitive probe for the accessibility of the terpyridyl groups. PY - 2012 U6 - https://doi.org/10.1021/la301644r SN - 0743-7463 SN - 1520-5827 VL - 28 IS - 29 SP - 10755 EP - 70763 PB - American Chemical Society CY - Washington, DC AN - OPUS4-26430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Traulsen, C.H.-H. A1 - Kunz, V. A1 - Heinrich, Thomas A1 - Richter, S. A1 - Holzweber, Markus A1 - Schulz, A. A1 - von Krbek, L.K.S. A1 - Scheuschner, U.T.J. A1 - Poppenberg, J. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Synthesis and coordinative layer-by-layer deposition of pyridine-functionalized gold nanoparticles and tetralactam macrocycles on silicon substrates N2 - Coordination chemistry was applied to deposit pyridine-functionalized gold nanoparticles on silicon substrates. The particles were synthesized through the Brust/Schiffrin route with a subsequent ligand exchange reaction yielding well-defined particles of two different sizes. Multilayer deposition was carried out on a pyridine-terminated SAM, anchored on a hydroxyl-terminated silicon surface. Analogously, Hunter/Vögtle-type tetralactam macrocycle multilayers were deposited as well as mixed layers containing both either in an alternating sequence or as a macrocycle multilayer with a terminating nanoparticle layer. These composite layers were examined with respect to their ability to bind squaraine axles in the macrocycle cavities. The amount of guest bound is higher for the composite layer with alternating macrocycles and nanoparticles. KW - Layer-by-layer deposition KW - Functionalized Au nanoparticles KW - SEM KW - TEM KW - DLS KW - XPS KW - NEXAFS KW - ToF-SIMS KW - IR KW - UV-vis PY - 2013 U6 - https://doi.org/10.1021/la403222x SN - 0743-7463 SN - 1520-5827 VL - 29 IS - 46 SP - 14284 EP - 14292 PB - American Chemical Society CY - Washington, DC AN - OPUS4-29699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holzweber, Markus A1 - Heinrich, T. A1 - Kunz, V. A1 - Richter, S. A1 - Traulsen, C.H.-H. A1 - Schalley, C.A. A1 - Unger, Wolfgang T1 - Principal component analysis (PCA)-assisted time-of-flight secondary-ion mass spectrometry (ToF-SIMS): a versatile method for the investigation of self-assembled monolayers and multilayers as precursors for the bottom-up approach of nanoscaled devices N2 - The production of high-quality self-assembled monolayers (SAMs) followed by layer-by-layer (LbL) self-assembly of macrocycles is essential for nanotechnology applications based on functional surface films. To help interpret the large amount of data generated by a standard ToF-SIMS measurement, principal component analysis (PCA) was used. For two examples, the advantages of a combination of ToF-SIMS and PCA for quality control and for the optimization of layer-by-layer self-assembly are shown. The first example investigates how different cleaning methods influence the quality of SAM template formation. The second example focuses on the LbL self-assembly of macrocycles and the corresponding stepwise surface modification. KW - ToF-SIMS KW - Principal component analysis KW - Self assembled monolayer KW - Layer by layer PY - 2014 U6 - https://doi.org/10.1021/ac500059a SN - 0003-2700 SN - 1520-6882 VL - 86 IS - 12 SP - 5740 EP - 5748 PB - American Chemical Society CY - Washington, DC AN - OPUS4-30963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinrich, Thomas A1 - Traulsen, Christoph Hans-Henning A1 - Darlatt, Erik A1 - Richter, S. A1 - Poppenberg, J. A1 - Traulsen, N.L. A1 - Linder, I. A1 - Lippitz, Andreas A1 - Dietrich, Paul A1 - Dib, B. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - The versatility of 'Click' reactions at surfaces: Molecular recognition at interfaces N2 - In order to investigate molecular recognition on surfaces, an azide-functionalized monolayer was deposited on gold. The monolayer was characterized by X-ray photoelectron spectroscopy (XPS) and angle-resolved near-edge X-ray absorption fine structure (NEXAFS) experiments and the decomposition of the azide upon irradiation with X-ray beams was investigated. Subsequently, various alkyne-functionalized host and guest molecules were attached to the azide by 1,3-dipolar cycloaddition. These modified surfaces and their host–guest chemistry were analysed by XPS and angle-resolved NEXAFS. The reversibility of guest binding was shown for one example as a proof of principle. KW - 'Click' reaction KW - Azide-terminated surfaces KW - SAMs KW - Host guest molecules KW - Molecular recognition at interfaces PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-306463 SN - 2046-2069 VL - 4 IS - 34 SP - 17694 EP - 17702 PB - RSC Publishing CY - London AN - OPUS4-30646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinrich, Thomas A1 - Traulsen, Christoph Hans-Henning A1 - Holzweber, Markus A1 - Richter, S. A1 - Kunz, V. A1 - Kastner, S.K. A1 - Krabbenborg, S.O. A1 - Huskens, J. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Coupled molecular switching processes in ordered mono- and multilayers of stimulus-responsive rotaxanes on gold surfaces N2 - Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimulus-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimulus-responsive surfaces may help integrate synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically switchable rotaxanes on gold surfaces. Rotaxane mono- and multilayers are shown to reversibly switch in a coupled manner between two ordered states as revealed by linear dichroism effects in angle-resolved NEXAFS spectra. Such a concerted switching process is observed only when the surfaces are well packed, while less densely packed surfaces lacking lateral order do not exhibit such effects. KW - Molecular machine KW - Rotaxane KW - LBL growth KW - XPS KW - NEXAFS KW - SIMS PY - 2015 U6 - https://doi.org/10.1021/ja512654d SN - 0002-7863 SN - 1520-5126 VL - 137 IS - 13 SP - 4382 EP - 4390 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-33077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, S. A1 - Traulsen, C. H.-H. A1 - Heinrich, Thomas A1 - Poppenberg, J. A1 - Leppich, C. A1 - Holzweber, Markus A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Sequence-programmable multicomponent multilayers of nanometer-sized tetralactam macrocycles on gold surfaces N2 - Multicomponent multilayers have been deposited on gold surfaces by metal-ion-mediated layer-by-layer self-assembly of differently functionalized tetralactam macrocycles. The layer stack can be programmed with respect to the sequences of metal ions and macrocycles by the deposition sequence. KW - Organic layer KW - XPS KW - SIMS KW - NEXAFS PY - 2013 U6 - https://doi.org/10.1021/jp405492v SN - 1932-7447 SN - 1089-5639 VL - 117 IS - 37 SP - 18980 EP - 18985 PB - Soc. CY - Washington, DC AN - OPUS4-32576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -