TY - CONF A1 - Gaal, Mate A1 - Daschewski, Maxim A1 - Bartusch, Jürgen A1 - Schadow, Florian A1 - Dohse, Elmar A1 - Kreutzbruck, Marc A1 - Weise, Matthias A1 - Beck, Uwe T1 - Novel air-coupled ultrasonic transducer combining the thermoacoustic with the piezoelectric effect N2 - In recent years, there has been an increasing industrial demand for one-sided inspection of various structures by means of air-coupled ultrasonic technique. Lightweight structures based on carbon-fibre-reinforced polymers may have very complex shapes, making air-coupled transmission difficult or even impossible. The inspection of concrete structures is another example where one-sided inspection is required. To address these challenges a new type of transducer for air-coupled pulse-echo inspection was developed, which unites two principles: thermoacoustic emission and piezoelectric reception. The thermoacoustic emitter is a titanium electrode with a thickness of several tens of nanometer. This electrode was deposited onto charged cellular polypropylene, which serves as a piezoelectric receiver. The thermoacoustic transmission is based on a transformation of the thermal energy of an electrically heated electrode into the acoustic energy of an ultrasonic wave. Thermoacoustic emitters provide resonance-free behaviour and thus extremely broadband pulses. Charged cellular polypropylene is piezoelectric due to the polarization of its cells and it is well matched to air, with a Young modulus in the order of magnitude of MPa. In this contribution we present some pulse-echo measurements with the first prototypes of the combined thermoacoustic-piezoelectric transducer. T2 - World Conference of Non-Destructive Testing CY - Munich, Germany DA - 13.6.2016 KW - Thermoacoustic KW - Piezoelectric KW - Ultrasonic transducer KW - Ferroelectret PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-367151 VL - 158 SP - Mo.1.F.4, 1 EP - 6 AN - OPUS4-36715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schadow, Florian A1 - Gaal, Mate A1 - Bartusch, Jürgen A1 - Dohse, E. A1 - Köppe, Enrico T1 - Focusing air-coupled ultrasonic transducers based on ferroelectrets N2 - Rising importance of composite lightweight structures in aircraft and automobile industries increases the demand on reliable non-destructive testing methods for these structures. Air-coupled ultrasonic testing emerged to suit these requirements as it does not require any liquid coupling medium. In conventional air-coupled ultrasonic transducers, matching layers are used in order to decrease the impedance mismatch between transducer and air. Matching layers can be omitted by using ferroelectrets, which are charged cellular polymers having ferroelectric and piezoelectric properties. Especially a low Young’s modulus, low density and low sound velocity of cellular polypropylene (cPP) are properties being required for well-matched air-coupled ultrasonic transducers. In our contribution we show recent enhancements of cPP transducers resulting in focused sound fields and thus improved lateral sensitivity. The influence of different transmitter apertures was evaluated using measurements of the emitted sound field. Further we show a transmission of a test specimen of carbon-fiber-reinforced plastic (CFRP) containing artificial damages. Results of focused transducers were compared to planar ferroelectret transducers, as well as to conventional air-coupled transducers. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - München, Germany DA - 13.06.2016 KW - Air-coupled ultrasonic testing KW - Ferroelectrets KW - Cellular polypropylene KW - Focused sound fields KW - Focused transducers PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-355116 UR - http://www.ndt.net/search/docs.php3?showForm=off&id=19453 SP - 1 EP - 8 AN - OPUS4-35511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -