TY - CONF A1 - Schadow, Florian A1 - Gaal, Mate A1 - Bartusch, Jürgen A1 - Dohse, Elmar A1 - Köppe, Enrico T1 - Focusing air-coupled ultrasonic transducers based on ferroelectrets N2 - Rising importance of composite lightweight structures in aircraft and automobile industries increases the demand on reliable non-destructive testing methods for these structures. Air-coupled ultrasonic testing emerged to suit these requirements as it does not require any liquid coupling medium. In conventional air-coupled ultrasonic transducers, matching layers are used in order to decrease the impedance mismatch between transducer and air. Matching layers can be omitted by using ferroelectrets, which are charged cellular polymers having ferroelectric and piezoelectric properties. Especially a low Young’s modulus, low density and low sound velocity of cellular polypropylene (cPP) are properties being required for well-matched air-coupled ultrasonic transducers. In our contribution we show recent enhancements of cPP transducers resulting in focused sound fields and thus improved lateral sensitivity. The influence of different transmitter apertures was evaluated using measurements of the emitted sound field. Further we show a transmission of a test specimen of carbon-fiber-reinforced plastic (CFRP) containing artificial damages. Results of focused transducers were compared to planar ferroelectret transducers, as well as to conventional air-coupled transducers. T2 - WCNDT 2016 CY - München, Germany DA - 13.06.2016 KW - Air-coupled ultrasonic testing KW - Ferroelectrets KW - Cellular polypropylene KW - Focused sound fields KW - Carbon-fiber-reinforced plastic PY - 2016 AN - OPUS4-36562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schadow, Florian A1 - Gaal, Mate A1 - Bartusch, Jürgen A1 - Dohse, E. A1 - Köppe, Enrico T1 - Focusing air-coupled ultrasonic transducers based on ferroelectrets N2 - Rising importance of composite lightweight structures in aircraft and automobile industries increases the demand on reliable non-destructive testing methods for these structures. Air-coupled ultrasonic testing emerged to suit these requirements as it does not require any liquid coupling medium. In conventional air-coupled ultrasonic transducers, matching layers are used in order to decrease the impedance mismatch between transducer and air. Matching layers can be omitted by using ferroelectrets, which are charged cellular polymers having ferroelectric and piezoelectric properties. Especially a low Young’s modulus, low density and low sound velocity of cellular polypropylene (cPP) are properties being required for well-matched air-coupled ultrasonic transducers. In our contribution we show recent enhancements of cPP transducers resulting in focused sound fields and thus improved lateral sensitivity. The influence of different transmitter apertures was evaluated using measurements of the emitted sound field. Further we show a transmission of a test specimen of carbon-fiber-reinforced plastic (CFRP) containing artificial damages. Results of focused transducers were compared to planar ferroelectret transducers, as well as to conventional air-coupled transducers. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - München, Germany DA - 13.06.2016 KW - Air-coupled ultrasonic testing KW - Ferroelectrets KW - Cellular polypropylene KW - Focused sound fields KW - Focused transducers PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-355116 UR - http://www.ndt.net/search/docs.php3?showForm=off&id=19453 SP - 1 EP - 8 AN - OPUS4-35511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schadow, Florian A1 - Gaal, Mate T1 - Air-coupled ultrasonics: experimental realization N2 - This presentation is an overview of experimental realization of air-coupled ultrasonic testing. Focusing transducers based on ferroelectrets are presented. Inspection results of natural defects like impact damage and delamination of composite structures are shown and challenges relating to the propability of detection of defects are pointed out. T2 - Non-destructive testing of fiber reinforced polymers. Training course ultrasonics and active thermography CY - Berlin, Germany DA - 28.03.2017 KW - Air-coupled ultrasonic testing KW - Carbon-fiber-reinforced plastic KW - Glass-fiber-reinforced plastic KW - Natural defects PY - 2017 AN - OPUS4-39865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Air-coupled ultrasonic ferroelectret transducers with additional bias voltage for testing of composite structures N2 - Common air-coupled transducers for non-destructive testing consist of a piezocomposite material and several matching layers. Better acoustical matching to air is achieved by transducers based on charged cellular polypropylene (PP). This material has about hundred times lower acoustic impedance than any piezocomposite, having about the same piezoelectric coefficient. The piezoelectric properties of cellular PP are caused by the polarization of air cells. Alternatively, a ferroelectret receiver can be understood as a capacitive microphone with internal polarization creating permanent internal voltage. The sensitivity of the receiver can be increased by applying additional bias voltage. We present an ultrasonic receiver based on cellular PP including a high-voltage module providing bias voltage up to 2 kV. The application of bias voltage increased the signal by 12 to 15 dB with only 1 dB increase of the noise. This receiver was combined with a cellular PP transmitter in through transmission to inspect several test specimens consisting of glass-fiber-reinforced polymer face sheets and a porous closed-cell PVC core. These test specimens were inspected before and after load. Fatigue cracks in the porous PVC core and some fatigue damage in the face sheets were detected. These test specimens were originally developed to emulate a rotor blade segment of a wind power plant. Similar composite materials are used in lightweight aircrafts for the general aviation. The other inspected test specimen was a composite consisted of glass-fiber-reinforced polymer face sheets and a wooden core. The structure of the wooden core could be detected only with cellular PP transducers, while commercial air-coupled transducers lacked the necessary sensitivity. Measured on a 4-mm thick carbon-fiber-reinforced polymer plate, cellular PP transducers with additional bias voltage achieved a 32 dB higher signal-to-noise ratio than commercial air-coupled transducers. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 26.10.2018 KW - Airborne ultrasonic testing KW - Air-coupled ultrasonic testing KW - Ferroelectret KW - Composites KW - Transducers PY - 2018 SP - 1 EP - 6 AN - OPUS4-46657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -