TY - CONF A1 - Pittner, Andreas A1 - Schürmann, Karsten A1 - Schaumann, Peter A1 - Rethmeier, Michael T1 - Quantifizierung der Einflüsse aus Fertigungsautomatisierung und Innenschweißen auf die Ermüdungsfestigkeit von Hohl-profilknoten für Offshore-Windenergieanlagen N2 - In diesem Vortrag werden aktuellen Forschungsarbeiten bezüglich der Digitalisierung der schweißtechnischen Fertigungskette dargestellt. Anwendungsbeispiel ist das automatisierte Schweißen von Hohlprofilknoten, welche für die Fertigung von Jacket-Gründungsstrukturen für Offshore Windenergieanlagen eingesetzt werden. Besonderer Fokus liegt hierbei auf der Datenübergabe an nachgelagerter Prozessschritte bzw. externe Forschungspartner. Die Rückverfolgbarkeit des Fertigungsprozesses ermöglicht die zeitliche und räumliche Zuordnung von Prozessparametern (elektrische Signale) zu geometrischen Eigenschaften der Schweißnaht (Kerbgeometrie) bis hin zur numerisch berechneten Lebensdauer. T2 - Forschungsvereinigung Stahlanwendung e.V. - Sitzung des Projekt begleitenden Ausschuss - FOSTA P1178 "FatInWeld" CY - Europipe - Mühlheim a.d.R., Germany DA - 20.06.2018 KW - Digitalisierung KW - Adaptive MSG-Lichtbogenprozesse KW - Prozesskette KW - Offshore wind KW - Ermüdungsfestigkeit PY - 2018 AN - OPUS4-46639 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Pittner, Andreas A1 - Schürmann, Karsten ED - Böhmer, Heike ED - Brinkmann-Wicke, Tanja ED - Sell, Sabine ED - Simon, Janet ED - Tebben, Cornelia T1 - Automatisierte Rohrknotenfertigung in der Offshore-Windenergie – Potenzial zum Leichtbau im schweren Stahlbau N2 - Um den Klimawandel wirksam zu bekämpfen, ist es entscheidend, fossile Brennstoffe durch erneuerbare Energiequellen wie Wind-, Solar- und Wasserkraft sowie alternative Energieträger, beispielsweise grünen Wasserstoff, zu ersetzen. Offshore-Windenergie spielt hierbei eine zentrale Rolle, da sie dank der Kombination aus globaler Verfügbarkeit, relativ geringen Betriebskosten und fortgeschrittenem technischen Entwicklungsstand besonders geeignet ist, zur regenerativen Stromerzeugung beizutragen. Sie ist zudem ein Schlüsselelement für die Umsetzung des Europäischen Green Deals, der das Ziel verfolgt, bis 2050 Klimaneutralität in der EU zu erreichen. Expertenschätzungen zufolge ist eine Steigerung der aktuellen Kapazität von 25 GW im Jahr 2020 auf etwa 450 GW notwendig, um diese ambitionierten Ziele zu erfüllen. Bei der Entwicklung zukünftiger Offshore-Windparks, insbesondere in tieferen Gewässern, gewinnen Jacket-Gründungsstrukturen an Bedeutung. Diese Strukturen, die eine höhere Steifigkeit bei geringerem Materialeinsatz im Vergleich zu den bisher vorherrschenden Monopile-Gründungen bieten, basieren auf komplexen, räumlich aufgelösten Konstruktionen, die ähnlich den Öl- und Gasplattformen entwickelt werden. Die Herstellung der Jacketknoten, die bislang überwiegend manuell geschweißt wurden, birgt erhebliches Optimierungspotential. Durch Automatisierung und Digitalisierung der Fertigungsprozesse könnten nicht nur die Effizienz gesteigert, sondern auch die Qualität der Endprodukte durch präzise Überwachung und Kontrolle der Produktionsparameter verbessert werden. Diese technologischen Fortschritte sind für die Skalierung der Offshore-Windenergie und die Erreichung der Klimaziele von entscheidender Bedeutung. KW - Automatisierte Fertigung KW - Offshore Windenergie KW - Jacket-Gründungsstrukturen KW - Aufgelöste Tragstrukturen KW - Leichtbau PY - 2022 SN - 978-3-7388-0719-6 SP - 260 EP - 266 PB - Fraunhofer IRB Verlag CY - Stuttgart AN - OPUS4-59502 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -