TY - JOUR A1 - Richter, Silke A1 - Sargent, M. A1 - Schiel, D. A1 - Kipphardt, Heinrich T1 - Known purity - the fundament of element determination by atomic spectrometry JF - Journal of analytical atomic spectrometry N2 - Millions of measurements are performed each year by liquid based analytical atomic spectrometry to support healthcare, diagnostic tests, environmental monitoring, material assay, product development and safety. Despite the effort to develop absolute methods, most methods still depend on calibration solutions, which are gravimetric mixtures of high purity solvents and high purity (source material) metals or compounds. As in the real world ideal purity does not exist, the impurity of the solvent and the purity of the source material needs to be known. The impurity of a solvent with respect to one analyte can be measured rather easily and with low limits of determination. In contrast the measurement of the purity of the source material, i.e., the mass fraction of the main constituent in a high purity metal, is more difficult to determine. It becomes even more difficult when the source material is not a pure metal but a compound since problems regarding stoichiometry arise additionally. Although the major producers of calibration solutions make a special effort to determine the purity of the source material, the actual purity statement is often incomplete or not demonstrated. The main reason for this situation is the complexity and high effort necessary to fully characterize such a material. This problem holds to a very wide extent also for the primary standards for element determination at the National Metrology Institutes and Designated Institutes (NMIs and DIs). It is the task of the NMIs and DIs to realise and disseminate primary standards for providing traceability to the International System of Units (SI). The primary elemental standards at the NMIs should provide the link to secondary standards produced by commercial producers and other independently prepared standards for element determination. Without such primary standards, elemental calibration solutions may vary and, depending on the uncertainty required, comparability of measurement in time and space results cannot be achieved. KW - Traceability KW - Metrology KW - Atomic spectrometry KW - Primary reference materials PY - 2013 DO - https://doi.org/10.1039/c3ja90045b SN - 0267-9477 SN - 1364-5544 VL - 28 IS - 10 SP - 1540 EP - 1543 PB - Royal Society of Chemistry CY - London AN - OPUS4-30301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -