TY - CONF A1 - Wolf, Julia A1 - Mielentz, Frank A1 - Milmann, Boris A1 - Helmerich, Rosemarie A1 - Köpp, Christian A1 - Wiggenhauser, Herbert A1 - Kurz, J.H. A1 - Moryson, R.M. A1 - Samokrutov, A. A1 - Alekhin, S. G. A1 - Alver, Ninel A1 - Sazak, H.Ö. T1 - An ultrasound monitoring system for concrete structures N2 - The research project "Ultrasonic Net for Concrete Monitoring (UNeCOM)" aims at developing a methodology for an embedded ultrasonic network for the condition assessment of infrastructure constructions. Civil engineering structures made of concrete, which are located in tectonically active regions or undergo special loading conditions, may require continuous monitoring. It is important to assess the condition of the building and its stability to recognise and classify the effect of a seismic event or evolving damage at early stages before failure occurs. Embedded ultrasonic sensors offer the possibility to detect changes in the material and degradation mechanisms from inside the structure in areas which are difficult or impossible to inspect otherwise. In contrast to conventional ultrasonic testing methods, where the concrete surfaces are scanned with ultrasound probes, this new approach uses sensors, which are embedded into concrete, eliminating the effect of variable coupling conditions between sensors and concrete. This method allows an integral detection of changes in the concrete structure, for example due to seismic activities, to detect mechanical impacts, as well as degradation of the material due to overloading. Such methods have great relevance especially for the monitoring of constructions like power plants, bridges, offshore structures and other structures with high technical safety requirements. The sensor network can be controlled remotely through the internet which is also being used for data transfer. The embedded sensor network is designed to monitor structural damage and concrete degradation globally with high sensitivity. T2 - Istanbul bridge conference 2014 CY - Istanbul, Turkey DA - 11.08.2014 KW - Ultrasound KW - Concrete KW - Monitoring PY - 2014 SN - 978-605-64131-6-2 SP - Paper 32, 1 EP - 9 AN - OPUS4-32028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiggenhauser, Herbert A1 - Samokrutov, A.A. A1 - Mayer, K. A1 - Krause, Martin A1 - Alekhin, S. G. A1 - Elkin, V. T1 - LAUS - Large aperture ultrasonic system - for testing thick concrete structures N2 - A Large Aperture UltraSonic (LAUS) system has been designed and built for testing thick concrete structures. The scalable system consists of twelve ultrasonic units, each hosting 32 individual shear wave transducers with mechanical dry point contact (DPC) to the concrete surface. The twelve units are attached to the concrete surface using a vacuum case which holds them in place during operation. Each LAUS unit can be placed individually depending on the surface condition and optimal ultrasonic condition, e.g. rebar position. Air pressure is supplied to each unit through an air hose. The following extended abstract is a short version of an article to be published in the special edition of ASCE JIS that will describe the outline of the system, the principle of functioning, the data processing and adapted reconstruction calculation based on SAFT as well as the system performance during first applications. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Ultrasonic imaging KW - Linear array KW - Reconstruction calculation (SAFT) PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-345383 UR - http://www.ndt.net/?id=18313 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 4 PB - NDT.net CY - Kirchwald AN - OPUS4-34538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -