TY - CONF A1 - Wolf, Julia A1 - Milmann, Boris A1 - Helmerich, Rosemarie A1 - Köpp, Christian A1 - Mielentz, Frank A1 - Wiggenhauser, Herbert A1 - Kurz, J.H. A1 - Moryson, R.-M. A1 - Samokrutov, A. A1 - Alekhin, S. G. A1 - Alver, Ninel A1 - Sazak, H.-Ö. ED - Xu, Y. L. ED - Zhu, S. ED - Xia, Y. ED - Ni, Y.Q. ED - Law, S.S. ED - Yin, J. H. ED - Su, Z.Q. T1 - Ultrasound based monitoring system for concrete monolithic objects N2 - Ultrasound sensors should be embedded into concrete for monitoring concrete properties. These new longitudinal wave sensors with a center frequency of 60 kHz were examined regarding their suitability for ultrasonic measurements in concrete structures in terms of emission characteristics, sensitivity and frequency ränge. For the measurement of the radiation patterns, the sensors were embedded vertically and horizontally in concrete cylinders. The directivity pattern was measured using a laser vibrometer. The sensitivity of the sensor was determined in water using different sensors of the same type. It shows changes in the signal amplitude as well as variations in the frequency ränge for different transmitter-receiver combinations. The attenuation of the concrete affects the achievable resolution of the measurements and thus, the maximum possible spacing of the sensors within a concrete element. Experimental tests helped optimizing the distances with respect to the required resolution and the effort of embedding the sensors. The signal attenuation in the concrete was measured in the frequency ränge of 60 kHz in response to various degrees of reinforcement and grain size. For this purpose, the sensors were cast at different distances in the specimens studied. The recorded Signals were evaluated for their amplitude and frequency spectrum. T2 - SHMII-6 - 6th International conference on structural health monitoring of intelligent infrastructure CY - Hong Kong, China DA - 09.12.2013 KW - Ultrasound KW - Concrete KW - Monitoring system KW - Ultrasonic network KW - Embedded sensor PY - 2013 SN - 978-962-367-768-4 SP - 1 EP - 6 AN - OPUS4-29642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wolf, Julia A1 - Mielentz, Frank A1 - Milmann, Boris A1 - Helmerich, Rosemarie A1 - Köpp, Christian A1 - Wiggenhauser, Herbert A1 - Kurz, J.H. A1 - Moryson, R.M. A1 - Samokrutov, A. A1 - Alekhin, S. G. A1 - Alver, Ninel A1 - Sazak, H.Ö. T1 - An ultrasound monitoring system for concrete structures N2 - The research project "Ultrasonic Net for Concrete Monitoring (UNeCOM)" aims at developing a methodology for an embedded ultrasonic network for the condition assessment of infrastructure constructions. Civil engineering structures made of concrete, which are located in tectonically active regions or undergo special loading conditions, may require continuous monitoring. It is important to assess the condition of the building and its stability to recognise and classify the effect of a seismic event or evolving damage at early stages before failure occurs. Embedded ultrasonic sensors offer the possibility to detect changes in the material and degradation mechanisms from inside the structure in areas which are difficult or impossible to inspect otherwise. In contrast to conventional ultrasonic testing methods, where the concrete surfaces are scanned with ultrasound probes, this new approach uses sensors, which are embedded into concrete, eliminating the effect of variable coupling conditions between sensors and concrete. This method allows an integral detection of changes in the concrete structure, for example due to seismic activities, to detect mechanical impacts, as well as degradation of the material due to overloading. Such methods have great relevance especially for the monitoring of constructions like power plants, bridges, offshore structures and other structures with high technical safety requirements. The sensor network can be controlled remotely through the internet which is also being used for data transfer. The embedded sensor network is designed to monitor structural damage and concrete degradation globally with high sensitivity. T2 - Istanbul bridge conference 2014 CY - Istanbul, Turkey DA - 11.08.2014 KW - Ultrasound KW - Concrete KW - Monitoring PY - 2014 SN - 978-605-64131-6-2 SP - Paper 32, 1 EP - 9 AN - OPUS4-32028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiggenhauser, Herbert A1 - Samokrutov, A.A. A1 - Mayer, K. A1 - Krause, Martin A1 - Alekhin, S. G. A1 - Elkin, V. T1 - LAUS - Large aperture ultrasonic system - for testing thick concrete structures N2 - A Large Aperture UltraSonic (LAUS) system has been designed and built for testing thick concrete structures. The scalable system consists of twelve ultrasonic units, each hosting 32 individual shear wave transducers with mechanical dry point contact (DPC) to the concrete surface. The twelve units are attached to the concrete surface using a vacuum case which holds them in place during operation. Each LAUS unit can be placed individually depending on the surface condition and optimal ultrasonic condition, e.g. rebar position. Air pressure is supplied to each unit through an air hose. The following extended abstract is a short version of an article to be published in the special edition of ASCE JIS that will describe the outline of the system, the principle of functioning, the data processing and adapted reconstruction calculation based on SAFT as well as the system performance during first applications. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Ultrasonic imaging KW - Linear array KW - Reconstruction calculation (SAFT) PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-345383 UR - http://www.ndt.net/?id=18313 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 4 PB - NDT.net CY - Kirchwald AN - OPUS4-34538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiggenhauser, Herbert A1 - Samokrutov, A A1 - Mayer, K A1 - Krause, Martin A1 - Alekhin, S. G. A1 - Elkin, V T1 - Large aperture ultrasonic system for testing thick concrete structures N2 - A Large Aperture UltraSonic system (LAUS) has been designed and built for testing thick concrete structures. The scalable system consists of twelve ultrasonic units, each hosting 32 individual shear wave transducers with mechanical dry point contact (DPC) to the concrete surface. The twelve units are attached to the concrete surface using a vacuum case which holds them in place during operation. Each LAUS unit can be placed individually on the surface to achieve optimal ultrasonic condition, e.g. to avoid rebars. For the generation of vacuum, air pressure is supplied to each unit through an air hose. The twelve units define an aperture which is necessary for fast reconstruction of the subsurface structure. The well-known SAFT (Synthetic Aperture Focusing Technique) algorithm has been adopted to this situation, where the individual LAUS units form a linear aperture with not necessarily equidistant spacing between the units. The exact geometrical position of the units, which are individually marked with retroreflective labels, is determined using photographs and image processing. All transducers are synchronized and work either as transmitter or receiver. A full scan consists of 12 * 11 recordings, where each unit acts as transmitter once and all others as receivers. An electronic sub-unit on the back of the ultrasonic device holds the battery and handles data acquisition, synchronization and data communication. A computer is used as base unit which communicates with each LAUS unit for control and data acquisition, the synchronization is performed by a radio modem that uses a special algorithm similar to a digital PLL (phase locked loop). No wire connections are necessary between the units and the base system. The LAUS system is designed to investigate concrete structures with thicknesses in excess of 2 m, depending on the acoustic condition of the object under investigation. Highly reinforced concrete may have less penetration depth. The LAUS provides quasi real time imaging, once the transducers are put in place and the data has been acquired. First measurements on a foundation slab confirm, that the system can register ultrasonic echoes from the back wall at 4 m distance. KW - Ultrasound "Large Aperture" NDT Concrete PY - 2017 U6 - https://doi.org/10.1061/(ASCE)IS.1943-555X.0000314 SN - 1076-0342 SN - 1943-555X VL - 23 IS - 1 SP - B4016004-1 EP - B4016004-9 PB - American Society of Civil Engineers (ASCE) CY - Reston, VA 20191-4400 USA AN - OPUS4-39372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -