TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS T2 - EMAS 2015 - 14th European workshop on modern developments and applications in microbeam analysis N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass - thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - EMAS 2015 - 14th European workshop on modern developments and applications in microbeam analysis CY - Portoroz, Slovenia DA - 03.05.2015 KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles KW - High-resolution PY - 2015 SN - 978-90-8227-691-6 DO - https://doi.org/10.1088/1757-899X/109/1/012006 SP - NUR code:972 - Materials Science, 187-199 AN - OPUS4-33258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Salge, T. A1 - Terborg, R. A1 - Ball, A. D. A1 - Broad, G.R. A1 - Kearsley, A.T. A1 - Jones, C.G. A1 - Smith, C. A1 - Rades, Steffi A1 - Hodoroaba, Vasile-Dan ED - Hozak, P. T1 - Advanced SEM/EDS analysis using an annular silicon drift detector (SDD): Applications in nano, life, earth and planetary sciences below micrometer scale T2 - IMC 2014 - 18th International microscopy congress (Proceedings) T2 - IMC 2014 - 18th International microscopy congress CY - Prague, Czech Republic DA - 2014-09-07 PY - 2014 SN - 978-80-260-6720-7 SP - IT-5-P-1842, 1-2 AN - OPUS4-31944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Salge, T. A1 - Nolze, Gert T1 - Innovations in EDS and EBSD Microanalysis: Hyperspectral Imaging for Planetological Applications Using Silicon Drift Detectors (SDD) and EBSD T2 - Meteoritics and Planetary Science N2 - Within the last decade, silicon drift detectors (SDD) systems have become more and more popular in the field of energy-dispersive spectroscopy (EDS). The main characteristic of the SDDs is their extremely high pulse load capacity of up to 750,000 counts per second at good or reasonable energy resolution (<123eV Mn-Kα, <46eV C-Kα at 100.000 cps). These properties in conjunction with electron backscatter diffraction (EBSD) techniques and modern data processing make a range of innovative analysis options possible, not only high speed mapping but also hyperspectral imaging techniques. T2 - 72nd Annual Meeting of the Meteoritical Society CY - Nancy, France DA - 13.07.2009 KW - Electron backscatter diffraction KW - Energy dispersive x-ray spectroscopy KW - Method combination PY - 2009 VL - Suppl. SP - 5270 AN - OPUS4-38002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -