TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass - thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - EMAS 2015 - 14th European workshop on modern developments and applications in microbeam analysis CY - Portoroz, Slovenia DA - 03.05.2015 KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles KW - High-resolution PY - 2015 SN - 978-90-8227-691-6 U6 - https://doi.org/10.1088/1757-899X/109/1/012006 SP - NUR code:972 - Materials Science, 187-199 AN - OPUS4-33258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass – thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - European Microbeam Analysis Society’s 14th European Workshop on Modern Developments and Applications in Microbeam Analysis (EMAS 2015) CY - Portorož, Slovenia DA - 03.05.2015 KW - High-resolution KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-355628 UR - http://iopscience.iop.org/article/10.1088/1757-899X/109/1/012006 SN - 1757-899X VL - 109 SP - 012006-1 EP - 012006-12 PB - IOP Publishing Ltd CY - Bristol, UK AN - OPUS4-35562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Salge, T. A1 - Terborg, R. A1 - Rackwitz, Vanessa T1 - Advanced elemental analysis with ED-EPMA, WD-EPMA and mu-XRF at a SEM N2 - It is a latent wish of any SEM/EDS (scanning electron microscope with an energy dispersive spectrometer) analyst to “see more” of the analyzed specimen, i.e. to improve the existing analytical figures of merit. One key issue are the relatively poor limits of detection (not below 0.1 mass-%) provided by energy dispersive X-ray spectrometry (EDX) with the conventional electron excitation (ED-EPMA). This is a consequence of relatively low peak-to-background ratios and reduced energy resolution when compared to wavelength dispersive spectrometry (WD-EPMA). Recent technological developments make possible to equip the SEM with a wavelength dispersive spectrometer (WDS), so that significantly better energy resolution can be attained. Also a relative new product that can be easily attached to a SEM/EDS system is a micro-focus X-ray source. Hence, it is possible to perform (micro-focus) X-ray fluorescence spectrometry (μ-XRF) and take advantage of the enhanced peak-to-background ratios (well suited for trace analysis). However, there are also some disadvantages: an increased measurement time and excitation with a high current in the 10s of nA range are usually required for WDS. μ-XRF provides more bulk information and poor limits of detection for light elements. By combining the advantages of these analytical techniques “seeing more” becomes possible. KW - ED-EPMA KW - WD-EPMA KW - (mu-)XRF KW - EDX PY - 2011 U6 - https://doi.org/10.1017/S1431927611003874 SN - 1431-9276 SN - 1435-8115 VL - 17 IS - Suppl. 2 SP - 600 EP - 601 PB - Cambridge University Press CY - New York, NY AN - OPUS4-26751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mielke, Johannes A1 - Rades, Steffi A1 - Ortel, Erik A1 - Salge, T. A1 - Hodoroaba, Vasile-Dan T1 - Improved spatial resolution of EDX/SEM for the elemental analysis of nanoparticles N2 - The interest in nanoparticles remains at a high level in fundamental research since many years and increasingly, nanoparticles are incorporated into consumer products to enhance their performance. Consequently, the accurate and rapid characterization of nanoparticles is more and more demanded. Electron microscopy (SEM, TSEM and TEM) is one of the few techniques which are able to image individual nanoparticles. It was demonstrated recently that the transmission electron microscopy at a SEM can successfully be applied as a standard method to characterize accurately the size (distribution) and shape of nanoparticles down to less than 10 nm. PY - 2015 U6 - https://doi.org/10.1017/S1431927615009344 SN - 1431-9276 SN - 1435-8115 VL - 21 IS - Suppl. 3 SP - Paper 0855, 1713 EP - 1714 PB - Cambridge University Press CY - New York, NY AN - OPUS4-34923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Hodoroaba, Vasile-Dan A1 - Salge, T. A1 - Wirth, Thomas A1 - Lobera, M.P. A1 - Labrador, R.H. A1 - Natte, Kishore A1 - Behnke, Thomas A1 - Gross, Thomas A1 - Unger, Wolfgang T1 - High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles N2 - The combination of complementary characterization techniques such as SEM (Scanning Electron Microscopy), T-SEM (Scanning Electron Microscopy in Transmission Mode), EDX (Energy Dispersive X-ray Spectroscopy) and SAM (Scanning Auger Microscopy) has been proven to be a powerful and relatively quick characterization strategy for comprehensive morphological and chemical characterization of individual silica and titania nanoparticles. The selected “real life” test materials, silica and titania, are listed in the OECD guidance manual as representative examples because they are often used as commercial nanomaterials. Imaging by high resolution SEM and in the transmission mode by T-SEM allows almost simultaneous surface and in-depth inspection of the same particle using the same instrument. EDX and SAM enable the chemical characterization of bulk and surface of individual nanoparticles. The core–shell properties of silica based materials are addressed as well. Titania nominally coated by silane purchased from an industrial source has been found to be inhomogeneous in terms of chemical composition. KW - surface and in-depth inspection KW - silica nanoparticles KW - titania nanoparticles PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-316296 SN - 2046-2069 VL - 4 IS - 91 SP - 49577 EP - 49587 PB - RSC Publishing CY - London AN - OPUS4-31629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Salge, T. A1 - Schmidt, R. A1 - Hodoroaba, Vasile-Dan T1 - Need for large-area EDS detectors for imaging nanoparticles in a SEM operating in transmission mode KW - EDS KW - EDX KW - Nanoparticles KW - High-resolution KW - SEM KW - T-SEM KW - Large-area EDS PY - 2014 U6 - https://doi.org/10.1017/S1431927614005030 SN - 1431-9276 SN - 1435-8115 VL - 20 IS - Suppl. S 3 SP - 662 EP - 663 PB - Cambridge University Press CY - New York, NY AN - OPUS4-31389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Salge, T. A1 - Tunckan, O. A1 - Scheller, S. A1 - Hodoroaba, Vasile-Dan A1 - Turan, S. T1 - Advanced light element and low energy X-ray analysis of ceramics and ceramic-metal joints using SEM/EDX with SDD T2 - The 22nd Australian Conference on Microscopy and Microanalysis (ACMM 22) CY - Perth, Australia DA - 2012-02-05 PY - 2012 AN - OPUS4-25530 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Salge, T. A1 - Tunckan, O. A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan A1 - Turan, S. T1 - Advanced light element and low energy X-ray analysis of ceramics and ceramic-metal joints using SEM/EDX with Silicon Drift Detector (SDD) T2 - 76. Jahrestagung der DPG und DPG-Frühjahrstagung CY - Berlin, Germany DA - 2012-03-25 PY - 2012 AN - OPUS4-25523 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Salge, T. A1 - Terborg, R. A1 - Ball, A. D. A1 - Broad, G. R. A1 - Kearsley, A. T. A1 - Jones, C. G. A1 - Smith, C. A1 - Rades, Steffi A1 - Hodoroaba, Vasile-Dan T1 - Advanced SEM/EDS analysis using an Annular Silicon Drift Detector (SDD): Applications in Nano, Life, Earth and Planetary Sciences below Micrometer Scale T2 - 18th International Microscopy Congress CY - Prague, Czech Republic DA - 2014-09-07 PY - 2014 AN - OPUS4-31915 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Salge, T. A1 - Hodoroaba, Vasile-Dan A1 - Tunckan, O. A1 - Terborg, R. A1 - Turan, S. T1 - Advanced light element and low energy X-ray analysis of ceramics and ceramic-metal joints using SEM/EDX with Silicon Drift Detectors (SDD) T2 - 20th National Electron Microscopy Congress CY - Kemer, Turkey DA - 2011-10-25 PY - 2011 AN - OPUS4-24135 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -