TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Salge, T. A1 - Terborg, R. A1 - Rackwitz, Vanessa T1 - Advanced elemental analysis with ED-EPMA, WD-EPMA and mu-XRF at a SEM N2 - It is a latent wish of any SEM/EDS (scanning electron microscope with an energy dispersive spectrometer) analyst to “see more” of the analyzed specimen, i.e. to improve the existing analytical figures of merit. One key issue are the relatively poor limits of detection (not below 0.1 mass-%) provided by energy dispersive X-ray spectrometry (EDX) with the conventional electron excitation (ED-EPMA). This is a consequence of relatively low peak-to-background ratios and reduced energy resolution when compared to wavelength dispersive spectrometry (WD-EPMA). Recent technological developments make possible to equip the SEM with a wavelength dispersive spectrometer (WDS), so that significantly better energy resolution can be attained. Also a relative new product that can be easily attached to a SEM/EDS system is a micro-focus X-ray source. Hence, it is possible to perform (micro-focus) X-ray fluorescence spectrometry (μ-XRF) and take advantage of the enhanced peak-to-background ratios (well suited for trace analysis). However, there are also some disadvantages: an increased measurement time and excitation with a high current in the 10s of nA range are usually required for WDS. μ-XRF provides more bulk information and poor limits of detection for light elements. By combining the advantages of these analytical techniques “seeing more” becomes possible. KW - ED-EPMA KW - WD-EPMA KW - (mu-)XRF KW - EDX PY - 2011 U6 - https://doi.org/10.1017/S1431927611003874 SN - 1431-9276 SN - 1435-8115 VL - 17 IS - Suppl. 2 SP - 600 EP - 601 PB - Cambridge University Press CY - New York, NY AN - OPUS4-26751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Salge, T. A1 - Schmidt, R. A1 - Hodoroaba, Vasile-Dan T1 - Need for large-area EDS detectors for imaging nanoparticles in a SEM operating in transmission mode KW - EDS KW - EDX KW - Nanoparticles KW - High-resolution KW - SEM KW - T-SEM KW - Large-area EDS PY - 2014 U6 - https://doi.org/10.1017/S1431927614005030 SN - 1431-9276 SN - 1435-8115 VL - 20 IS - Suppl. S 3 SP - 662 EP - 663 PB - Cambridge University Press CY - New York, NY AN - OPUS4-31389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass - thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - EMAS 2015 - 14th European workshop on modern developments and applications in microbeam analysis CY - Portoroz, Slovenia DA - 03.05.2015 KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles KW - High-resolution PY - 2015 SN - 978-90-8227-691-6 U6 - https://doi.org/10.1088/1757-899X/109/1/012006 SP - NUR code:972 - Materials Science, 187-199 AN - OPUS4-33258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Salge, T. A1 - Mielke, Johannes A1 - Ortel, Erik A1 - Schmidt, R. T1 - Characterisation of nanoparticles by means of high-resolution SEM/EDS in transmission mode N2 - Advances in scanning electron microscopy (SEM) enable the high-resolution imaging of single nanoparticles (NPs) with sizes well below 10 nm. The SEM analysis in transmission mode (T-SEM) of NPs on thin film supports has many benefits when compared to the analysis of NPs on bulk substrates. The enhanced material (mass – thickness) contrast of the T-SEM imaging mode is well suited for in-depth and, particularly valuable, to very accurate, traceable, lateral dimensional measurements of NPs. Compared to samples prepared on bulk substrates, T-SEM with energy dispersive X-ray spectroscopy (EDS) achieves a drastically improved spatial resolution of the emitted X-rays. The poor signal-to-noise ratio of the X-ray spectra emitted by a single nanoparticle (NP) can be improved by the use of high-sensitivity (high collection solid angle) silicon drift (SDD), energy-dispersive X-ray spectrometers (EDS). The EDS spectral imaging of a single NP with a spatial resolution below 10 nm has become possible. This is demonstrated by means of various examples of nanostructures. Advanced data processing of T-SEM/EDS results sets the stage for the automated classification of NPs by feature analysis. This method combines the detection of morphological structures of interest by image processing of T-SEM micrographs with the chemical classification by EDS. T2 - European Microbeam Analysis Society’s 14th European Workshop on Modern Developments and Applications in Microbeam Analysis (EMAS 2015) CY - Portorož, Slovenia DA - 03.05.2015 KW - High-resolution KW - SEM KW - T-SEM KW - EDX KW - Nanoparticles PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-355628 UR - http://iopscience.iop.org/article/10.1088/1757-899X/109/1/012006 SN - 1757-899X VL - 109 SP - 012006-1 EP - 012006-12 PB - IOP Publishing Ltd CY - Bristol, UK AN - OPUS4-35562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -