TY - JOUR A1 - Mrkwitschka, Paul A1 - Sahre, Mario A1 - Corrao, Elena A1 - Pellegrino, Francesco A1 - Hodoroaba, Vasile-Dan T1 - Wire-Print as a Sample Preparation Procedure Suitable for Accurate Morphological Characterization of Constituent Particles for Graphene-Related 2D-Materials N2 - In this study we have systematically tested the efficacy of a new deposition procedure for graphene-related 2D materials (GR2M’s) from liquid suspension onto a substrate for quantitative analysis of their size and shape distribution with electron microscopy. The technique is an extension of the conventional drop-casting method, and we have designated it “wire-print” deposition. It consists of two steps, first one being usual drop-casting on a copper substrate and second one involving a thin copper wire with a sub-mm diameter being dipped into the deposited droplet and retracted with a corresponding half-spherical droplet attached on its tip and final deposition of this entire nL-amount of suspension onto e.g. a silicon wafer for microscopical, detailed analysis. 11 series of such a wire-print deposition for a graphene-based ink have been considered, whereby various conditions (treatment of the starting suspension) have been experimented with a repetition of up to 10 times per condition, all together 86 spots on a silicon wafer of 10 mm x 10 mm. The evaluation of one series of 8 repeated wire-print depositions reveal that the deposited spots are visualized with SEM. The weak presence of coffee-rings, irregular spot shape, and presence of agglomerates should be noticed. Both the mean value of the 8 ECD distributions and the total number of flakes deposited in each spot show a variance in the range of 17% and 22%, respectively. In the context of accurate analysis of such challenging complex materials these numbers can be considered as excellent and demonstrate the high benefit of the wire-print deposition for accurate morphological measurements on GR2M’s. KW - Sample preparation KW - Imaging KW - 2D materials KW - Morphology KW - Size distribution PY - 2025 DO - https://doi.org/10.1093/mam/ozaf048.219 VL - 31 IS - 7 SP - 436 EP - 437 PB - Oxford Academic AN - OPUS4-63821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Laser ablation in liquid KW - Nanoparticles KW - Titanium oxide KW - Particle morphology PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electron-microscopy-and-xray-diffraction-analysis-of-titanium-oxide-nanoparticles-synthesized-by-pulsed-laser-ablation-in-liquid/AE368446FAC70E08C514F9AEABFD131B DO - https://doi.org/10.1017/S1431927618009030 VL - 24 IS - S1 (August) SP - 1710 EP - 1711 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water N2 - In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated byXRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Titanium oxide KW - Nanoparticles KW - Laser ablation in liquid KW - Particle morphology KW - Nanoparticle structure PY - 2018 DO - https://doi.org/10.1088/2053-1591/aaba56 SN - 2053-1591 VL - 5 IS - 4 SP - 045015-1 EP - 045015-12 PB - IOP Publishing CY - London, UK AN - OPUS4-44678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mitzkus, Anja A1 - Sahre, Mario A1 - Basedau, Frank A1 - Hofman, Detlef A1 - Beck, Uwe T1 - Fiber Bragg Gratings for In-Situ Stress Monitoring of Electrochemical Deposition N2 - The in-situ monitoring of electrochemical deposition (ECD) processes is still a challenge regarding the measurement of the effective temperature of the substrate and the formation of mechanical stress in the layer under given plating conditions. Monitoring problems can be solved by applying a pre-coated fiber Bragg grating (FBG) to the electrolytic process as the shift of the Bragg wavelength is affected by both the temperature of the electrolyte near the substrate and the stress formation in the growing layer. The experimental FBG set-up and the quantitative determination of temperature- and stress-related strain is described for a nickel-iron electrolyte. KW - Fiber Bragg grating (FBG) KW - Electrochemical deposition (ECD) KW - Optical fibers PY - 2019 DO - https://doi.org/10.1149/2.0111906jes SN - 0013-4651 VL - 166 IS - 6 SP - B312 EP - B315 PB - Electrochemical Society CY - Pennington, NJ AN - OPUS4-47738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Habibimarkani, Heydar A1 - Prinz, Carsten A1 - Sahre, Mario A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - CV, TEM, XRD and XPS/HAXPES datasets of FeNi-based nanoparticles for the oxygen evolution reaction N2 - The datasets from Cyclic Voltammetry, Transmision Electron Microscopy, X-ray Diffraction, and (Hard Energy) X-ray Photoelectron Spectroscopy are related to the publication H. Habibimarkani, S.-L. Abram, A. Guilherme Buzanich, C. Prinz, M. Sahre, V.-D. Hodoroaba and J. Radnik "In-depth analysis of FeNi-based nanoparticles for the oxygen evolution reaction" Scientific Reports (2025), https://doi.org/10.1038/s41598-025-92720-3 Details of the materials and the experimental procedures are described in this publications. KW - Oxygen evolution reaction KW - Fe-Ni nanopartices KW - Comprehensive analysis PY - 2025 DO - https://doi.org/10.5281/zenodo.14975964 PB - Zenodo CY - Geneva AN - OPUS4-63335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habibimarkani, Heydar A1 - Abram, Sarah-Luise A1 - de Oliveira Guilherme Buzanich, Ana A1 - Prinz, Carsten A1 - Sahre, Mario A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - In-depth analysis of FeNi-based nanoparticles for the oxygen evolution reaction N2 - This study investigates the effect of varying iron-to-nickel ratios on the catalytic performance of Fe-Ni oxide nanoparticles (NPs) for the oxygen evolution reaction (OER). Addressing the issue of high energy wastage due to large overpotentials in OER, we synthesized and characterized different NP catalysts with different Fe: Ni oxide ratios. Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction (XRD) were employed to determine the morphology, elemental and phase composition of the NPs. Furthermore, in-depth profiling with X-ray Photoelectron Spectroscopy (XPS) and Hard X-ray Photoelectron Spectroscopy (HAXPES) revealed that iron predominantly exists as oxide, while nickel exhibits both metallic and oxidic forms depending on the Fe content. XPS indicated an enrichment of iron at the NP surface, whereas HAXPES and EDS data agreed on the bulk stoichiometry. The assessment of the catalytic activity via cyclic voltammetry (CV) showed that the Fe: Ni ratio of 2:3 exhibited superior performance, characterized by lower overpotential and a smaller Tafel slope. KW - Fe-Ni oxide KW - Nanoparticles KW - OER KW - Catalytic performance KW - Cyclic voltammetry PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626932 UR - https://www.nature.com/articles/s41598-025-92720-3 DO - https://doi.org/10.1038/s41598-025-92720-3 VL - 15 IS - 1 SP - 1 EP - 17 PB - Springer Nature AN - OPUS4-62693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - John, Elisabeth A1 - Weise, Matthias A1 - Radnik, Jörg A1 - Stockmann, Jörg Manfred A1 - Lange, Thorid A1 - Sahre, Mario A1 - Hodoroaba, Vasile-Dan T1 - Towards a New Reference Material—Analytical Challenges in Examining High-Entropy Alloy Thin Films N2 - A new high-entropy alloy (HEA) consisting of titanium, chromium, manganese, iron, and nickel was deposited as a thin-film on silicon substrates using magnetron sputtering from a novel segmented target composed of metal stripes. This material was explored with the goal to create a new reference material for surface analysis and evaluation of complex composite materials. The film's morphology was initially characterized by scanning electron microscopy (SEM), followed by crystallographic analysis using X-ray diffraction (XRD) and selected area electron diffraction (SAED). The two-dimensional compositional homogeneity was assessed using a combination of scanning and transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), X-ray fluorescence (XRF), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and X-ray photoelectron spectroscopy (XPS). The in-depth chemical composition was further analysed using ToF-SIMS and Auger electron spectroscopy (AES). Our findings demonstrate that it is possible to produce thin HEA films with a homogeneous in-depth composition from a segmented target. Notably, despite the fixed composition of the target, we were able to vary the HEA's composition by exploiting inhomogeneities within the magnetrons sputter plasma. Additionally, we successfully created HEA films with significant compositional gradients. T2 - ECASIA CY - Gothenburg, Sweden DA - 10.06.2024 KW - Reference material KW - High-entropy alloy KW - Thin-films PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625777 DO - https://doi.org/10.1002/sia.7387 SN - 1096-9918 SP - 1 EP - 8 PB - Wiley AN - OPUS4-62577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schusterbauer, Robert A1 - Mrkwitschka, Paul A1 - Sahre, Mario A1 - Corrao, Elena A1 - Zurutuza, Amaia A1 - Doolin, Alexander A1 - Pellegrino, Francesco A1 - Radnik, Jörg A1 - Donskyi, Ievgen S. A1 - Hodoroaba, Vasile-Dan T1 - Correlative Chemical Imaging to Reveal the Nature of Different Commercial Graphene Materials N2 - Proper physicochemical characterization of advanced materials and complex industrial composites remains a significant challenge, particularly for nanomaterials, whose nanoscale dimensions and mostly complex chemistry challenge the analysis. In this work, we employed a correlative analytical approach that integrates atomic force microscopy (AFM), scanning electron microscopy (SEM) coupled with energy‐dispersive X‐ray spectroscopy (EDS), time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), Auger electron spectroscopy (AES), and Raman spectroscopy. This combination enables detailed chemical and structural characterization with sub‐micrometer spatial resolution. Three commercial graphene‐based materials of varying complexity were selected and investigated to test the analytical performance of this approach. Furthermore, one of the commercial graphene oxide samples was chemically functionalized via amination and fluorination. This allowed us to assess how surface modifications influence both the material properties and the limits of the applied analytical techniques. KW - Analytical methods KW - Commercial products KW - Correlative analysis KW - Graphene KW - Surface imaging PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654765 DO - https://doi.org/10.1002/smtd.202502344 SN - 2366-9608 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-65476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -