TY - JOUR A1 - Ruhl, Aki Sebastian A1 - Kranzmann, Axel T1 - Corrosion in supercritical CO2 by diffusion of flue gas acids and water JF - The journal of supercritical fluids N2 - Carbon capture and storage (CCS) includes processing of supercritical carbon dioxide (scCO2). The carbon dioxide (CO2) stemming from flue gases contains acid forming impurities, especially in the case of coal fired power plants. In the present work, the mobility and reactivity of acids in supercritical scCO2 was investigated. The corrosive attack of low alloyed carbon steel (material 1.0484) by water (H2O) alone in scCO2 was negligible. Nitric acid (HNO3) was very mobile and corrosive towards the carbon steel while sulfuric acid did not migrate through the scCO2 to react with the steel surface. Hydrochloric acid in scCO2 was very mobile and reactive towards both carbon steel and high alloyed test equipment. Gravimetric analyses revealed a severe material loss after corrosion in the presence of HNO3. Thickness measurements showed localized material losses. KW - Supercritical CO2 KW - Corrosion KW - Carbon steel KW - Carbon capture and storage KW - CCS KW - Flue gas acids PY - 2012 DO - https://doi.org/10.1016/j.supflu.2012.04.015 SN - 0896-8446 VL - 68 SP - 81 EP - 86 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-28054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kranzmann, Axel A1 - Neddemeyer, Torsten A1 - Ruhl, Aki Sebastian A1 - Hünert, Daniela A1 - Bettge, Dirk A1 - Oder, Gabriele A1 - Saliwan Neumann, Romeo T1 - The challenge in understanding the corrosion mechanisms under oxyfuel combustion conditions JF - International journal of greenhouse gas control N2 - Basic research on the corrosive effect of flue gases has been performed at the BAM Federal Institute for Materials Research and Testing (Germany). Conditions at both high and low temperatures were simulated in specially designed experiments. Carburization occured in flue gases with high CO2 content and temperatures higher than 500 °C. In SO2 containing flue gases sulphur was detected in the oxide scale. At lower temperatures no corrosion was observed when gases with low humidity were investigated. Humidity higher than 1500 ppm was corrosive and all steels with Cr contents lower than 12% revealed corroded surfaces. At low temperatures below 10 °C a mixture of sulphuric and nitric acid condensed on metal surfaces. Acid condensation caused severe corrosion. Humidity, CO2, O2, and SO2 contents are the important factors determining corrosion. Below 300 °C acid condensation is the primary reason for corrosion. Low humidity and low temperatures are conditions which can be expected in the CO2 separation and treatment process. This work includes major conditions of the flue gas and CO2 stream in CCS plants and CCS technology. KW - Coal KW - Oxyfuel power plant KW - Corrosion KW - Carburization KW - Sulphur KW - Sulphuric acid PY - 2011 DO - https://doi.org/10.1016/j.ijggc.2011.05.029 SN - 1750-5836 VL - 5 IS - Supplement 1 SP - S168 EP - S178 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-24705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Ruhl, Aki Sebastian A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Kranzmann, Axel T1 - Corrosion aspects of materials selection for CO2 transport and storage T2 - 2nd ICEPE International conference on energy process engineering - Efficient carbon capture for coal power plants N2 - The geological storage of carbon dioxide (Carbon Capture and Storage, CCS) in depleted gas reservoirs or in saline aquifers is a widely discussed issue. Carbon dioxide may induce corrosion on the piping steels during compression, transportation and injection. Therefore, selection of appropriate piping steels is a key factor in order to increase the safety and reliability of the CCS technology, and to keep the processes cost-effective. The here described subproject of the COORAL project (German acronym for “C02 purity for capture and storage”) deals with the levels of impurities in the C02 stream that will be acceptable when using specific steels. Material exposure to carbon dioxide (C02) containing specific amounts of water vapor, oxygen (02) sulfur dioxide (S02), nitrogen dioxide (N02), carbon monoxide (CO) can be a challenge to steels. Within this subproject 13 different Steels are tested for suitability as materials used for compression, transportation and injection Units within the CCS chain. T2 - 2nd ICEPE International conference on energy process engineering - Efficient carbon capture for coal power plants CY - Frankfurt/M., Germany DA - 20.06.2011 KW - Carbon capture KW - CCS KW - Corrosion PY - 2011 SP - 76 EP - 78 AN - OPUS4-24250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -