TY - JOUR A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Kukofka, Tobias A1 - Ruder, J. A1 - Schartel, Bernhard T1 - Durability of the flame retardance of ethylene-vinyl acetate copolymer cables: Comparing different flame retardants exposed to different weathering conditions N2 - Scientific publications addressing the durability of the flame retardance of cables during their long-term application are rare and our understanding lacks. Three commercial flame retardants, aluminum hydroxide, aluminum diethyl phosphinate (AlPi-Et), and intumescent flame retardant based on ammonium polyphosphate, applied in ethylene-vinyl acetate copolymer (EVA) model cables, are investigated. Different artificial aging scenarios were applied: accelerated weathering (UV-irradiation/temperature/rain phases), humidity exposure (elevated temperature/humidity), and salt spray exposure. The deterioration of cables’ surface and flame retardancy were monitored through imaging, color measurements, attenuated total reflectance Fourier transform infrared spectroscopy, and cone calorimeter investigations. Significant degradation of the materials’ surface occurred. The flame retardant EVA cables are most sensitive to humidity exposure; the cable with AlPi-Et is the most sensitive to the artificial aging scenarios. Nevertheless, substantial flame retardance persisted after being subjected for 2000 h, which indicates that the equivalent influence of natural exposure is limited for several years, but less so for long-term use. KW - Durability KW - Flame retardant KW - Cable KW - Weathering KW - Cone calorimeter PY - 2020 U6 - https://doi.org/10.1002/APP.47548 SN - 0021-8995 VL - 137 IS - 1 SP - 47548 PB - Wiley AN - OPUS4-50237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Kukofka, Tobias A1 - Klack, Patrick A1 - Ruder, J. A1 - Lin, Xuebao A1 - Schartel, Bernhard T1 - Degradation of flame retardance: A comparison of ethylene‐vinyl acetate and low‐density polyethylene cables with two different metal hydroxides N2 - The durability of flame retardancy is a challenge for cables over long lifetimes. The degradation of flame retardance is investigated in two kinds of exposures, artificial weathering and humidity. In this basic study, typical mineral flame retardants in two polymers frequently used in cable jackets are investigated to get the fundamental picture. Aluminum hydroxide (ATH) and magnesium hydroxide (MDH) are compared in ethylene‐vinyl acetate (EVA), and further in EVA and linear low‐density polyethylene (LLDPE) cables containing the same ATH. The changes in chemical structure at the surface are studied through attenuated total reflectance Fourier transform infrared spectroscopy (ATR‐FTIR), the formation of cracks, and changes in color are investigated. The cone calorimeter and a bench scale fire testing cable module are utilized to evaluate the fire behavior of the cables. Although the flame retardancy deteriorated slightly, it survived harsh exposure conditions for 2000 h. Compared to EVA/MDH and LLDPE/ATH, the fire behavior of EVA/ATH is the least sensitive. Taken together, all of the results converge to estimate that there will be no problem with flame retardancy performance, for materials subjected to natural exposure for several years; the durability of fire retardancy is questionable for longer periods, and thus requires further investigation. KW - Durability KW - Flame retardant KW - Aluminum hydroxide (ATH) KW - Magnesium hydroxide KW - Ethylene-vinyl acetate KW - Cables KW - Weathering PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-519573 VL - 138 IS - 14 SP - 50149 PB - Wiley AN - OPUS4-51957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -