TY - JOUR A1 - Hoffmann, H A1 - Paulisch, M C A1 - Gebhard, M A1 - Osiewacz, J A1 - Kutter, M A1 - Hilger, A A1 - Arlt, T A1 - Kardjilov, N A1 - Ellendorff, B A1 - Beckmann, F A1 - Markötter, Henning A1 - Luik, M A1 - Turek, T A1 - Manke, I A1 - Roth, C T1 - Development of a Modular Operando Cell for X-ray Imaging of Strongly Absorbing Silver-Based Gas Diffusion Electrodes N2 - Metal-based gas diffusion electrodes are utilized in chlor-alkali electrolysis or electrochemical reduction of carbon dioxide, allowing the reaction to proceed at high current densities. In contrast to planar electrodes and predominantly 2D designs, the industrially required high current densities can be achieved by intense contact between the gas and liquid phase with the catalytically active surfaces. An essential asset for the knowledge-based design of tailored electrodes is therefore in-depth information on electrolyte distribution and intrusion into the electrode’s porous structure. Lab-based and synchrotron radiography allow for monitoring this process operando. Herein, we describe the development of a cell design that can be modularly adapted and successfully used to monitor both the oxygen reduction reaction and the electrochemical reduction of CO2 as exemplary and currently very relevant examples of gas-liquid reactions by only minor modifications to the cell set-up. With the reported cell design, we were able to observe the electrolyte distribution within the gas diffusion electrode during cell operation in realistic conditions. KW - X-Ray imaging KW - Gas diffusion electrodes KW - Operando cell PY - 2022 U6 - https://doi.org/10.1149/1945-7111/ac6220 VL - 169 IS - 4 SP - 044508 PB - IOP science AN - OPUS4-55027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rautenberg, Max A1 - Gernhard, M. A1 - Radnik, Jörg A1 - Witt, Julia A1 - Roth, C. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of fluorine-containing Co-doped zeolitic imidazolate frameworks for producing electrocatalysts N2 - Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising candidates to replace expensive and scarce platinum-based electrocatalysts commonly used in polymer electrolyte membrane fuel cells. MOFs contain ordered connections between metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR). Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being active as well. Thus, a carbon material with Co-N-F doping could possibly be even more promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the mechanochemical formation revealed a direct conversion of starting materials to the products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F containing carbons, which are active toward electrochemical ORR. KW - Mechanochemistry KW - Metal-organic-frameworks KW - Nobel-metal free electrocatalysis PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546833 SN - 2296-2646 VL - 10 IS - 840758 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-54683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gernhard, M. A1 - Rautenberg, Max A1 - Hörner, G. A1 - Weber, B. A1 - Emmerling, Franziska A1 - Roth, C. T1 - Mechanochemical Synthesis as a Greener Way to ProduceIron-based Oxygen Reduction Catalysts N2 - Iron-based catalysts have been reported manifold and studied as platinum group metal (PGM) free alternatives for the catalysis of the oxygen reduction reaction (ORR). However, their sustainable preparation by greener synthesis approaches is usually not discussed. In this work, we propose a new method for the sustainable preparation of such catalysts by using a mechanochemical approach, with no solvents and non-toxic chemicals. The materials obtained from low temperature carbonization (700 °C) exhibit considerable and stable catalytic performance for ORR in alkaline medium. A catalyst obtained from iron hydroxide, tryptophan, dicyandiamide, and ammonium nitrate shows the best electrocatalytic Performance with an overpotential of 921 mV vs. RHE at 0.1 mA/cm2 and an electron transfer number of 3.4. KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - AEMFC KW - Mössbauer Spectroscopy KW - Sustainable Synthesis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-535326 VL - 647 IS - 22 SP - 2080 EP - 2087 PB - Weinheim-VCH GmbH AN - OPUS4-53532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruna, F. G. A1 - Prokop, M. A1 - Bystron, T. A1 - Loukrakpam, R. A1 - Melke, J. A1 - Lobo, C. M. S. A1 - Fink, M. A1 - Zhu, M. A1 - Voloshina, E. A1 - Kutter, M. A1 - Hoffmann, H. A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Röder, B. A1 - Bouzek, K. A1 - Paulus, B. A1 - Roth, C. T1 - Following adsorbed intermediates on a platinum gas diffusion electrode in H3PO3‑containing electrolytes using in situ X‑ray absorption spectroscopy N2 - One of the challenges of high-temperature polymer electrolyte membrane fuel cells is the poisoning of the Pt catalyst with H3PO4. H3PO4 is imbibed into the routinely used polybenzimidazole-based membranes, which facilitate proton conductivity in the temperature range of 120−200 °C. However, when leached out of the membrane by water produced during operation, H3PO4 adsorbs on the Pt catalyst surface, blocking the active sites and hindering the oxygen reduction reaction (ORR). The reduction of H3PO4 to H3PO3, which occurs at the anode due to a combination of a low potential and the presence of gaseous H2, has been investigated as an additional important contributing factor to the observed poisoning effect. H3PO3 has an affinity toward adsorption on Pt surfaces even greater than that of H2PO4 −. In this work, we investigated the poisoning effect of both H3PO3 and H3PO4 using a half-cell setup with a gas diffusion electrode under ambient conditions. By means of in situ X-ray absorption spectroscopy, it was possible to follow the signature of different species adsorbed on the Pt nanoparticle catalyst (H, O, H2PO4 −, and H3PO3) at different potentials under ORR conditions in various electrolytes (HClO4, H3PO4, and H3PO3). It was found that H3PO3 adsorbs in a pyramidal configuration P(OH)3 through a Pt−P bond. The competition between H3PO4 and H3PO3 adsorption was studied, which should allow for a better understanding of the catalyst poisoning mechanism and thus assist in the development of strategies to mitigate this phenomenon in the future by minimizing H3PO3 generation by, for example, improved catalyst design or adapted operation conditions or changes in the electrolyte composition. KW - H3PO4 life cycle KW - XAS KW - In situ coupling KW - High-temperature fuel cells KW - Δμ XANES KW - H3PO3 PY - 2022 U6 - https://doi.org/10.1021/acscatal.2c02630 SN - 2155-5435 VL - 12 IS - 18 SP - 11472 EP - 11484 PB - ACS CY - Washington, DC AN - OPUS4-55815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brieger, C. A1 - Melke, J. A1 - van der Bosch, N. A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - de Oliveira Guilherme Buzanich, Ana A1 - Krishna Kayarkatte, M. A1 - Derr, I. A1 - Schökel, A. A1 - Roth, C. ED - de Oliveira Guilherme Buzanich, Ana T1 - A combined in-situ XAS–DRIFTS study unraveling adsorbate induced changes on Pt nanoparticle structure N2 - The adsorption behavior of Platinum nanoparticles was studied for the as-received catalyst (under inert gas), under hydrogen and CO atmosphere using our newly designed in-situ cell. X-ray Absorption Spectroscopy (XAS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) experiments were performed simultaneously with high data quality. Structural information and the type of adsorbate could be revealed via Extended X-ray Absorption Fine Structure (EXAFS) analysis, Δμ X-ray Absorption Near Edge Structure analysis (Δμ XANES) and in-situ DRIFTS. The as-received catalyst showed sub-surface oxygen and O(n-fold). Under CO atmosphere only CO(atop) was found. Reversible adsorbate induced changes of the Pt nanoparticle structure were derived from changes in the Pt-Pt coordination number and the corresponding bond distance. Under reducing conditions (H2, CO) a significant increase in both values occurred. Temperature dependent desorption of CO revealed a gradual shift from Pt-CO to Pt-O. Reoxidation was clearly assigned to strong metal support interaction from the SiO2 support. KW - X-ray absorption spectroscopy KW - DRIFTS KW - XANES KW - CO adsoprtion KW - Platinum KW - String metal support interaction KW - Silica support KW - Adsorbates KW - Infrared spectroscopy PY - 2016 U6 - https://doi.org/10.1016/j.jcat.2016.03.034 SN - 0021-9517 VL - 339 SP - 57 EP - 67 PB - Elsevier AN - OPUS4-38367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Roth, C. T1 - Polyaniline/silicon dioxide containing coating for use in artificial geothermal brines N2 - Geothermal brine is a complex system containing a wide variety of dissolved salts resulting from the condition s in a geothermal well. These fluids lead to corrosion in pipes and other parts of geothermal system construction and necessitate intense research efforts in finding new suitable materials. Carbon steel is susceptible to corrosion in geothermal brine especially when it is exposed to a high temperature and high-pressure medium, which is considered to be an aggressive environment. An artificial geothermal water, bas ed on a brine composition found in Indonesia, was used to investigate the performance of high alloyed materials. The electrolyte has pH 4 and contains 1,500 mg/l Cl-, 20 mg/l SO4 2-, 15 mg/l HCO3 -, 200 mg/l Ca 2+, 250 mg/l K+, and 600 mg/l Na+. In order to protect the bare material in geothermal application, it is necessary to either use high alloyed material s or coatings. In this research, a coating system consisting of polyaniline and silicon dioxide was investigated regarding its behavior to protect carbon steel. In detail, the effect of SiO2 and polyaniline (PANi) addition was evaluated by exposure and electrochemical tests for 7 days, i.e. electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP ) at room temperature and 150 °C with 1 MPa pressure . T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - Geothermal KW - Coating KW - SiO 2 KW - Polyaniline KW - Corrosion PY - 2018 SP - 10708, 1 EP - 14 PB - Omnipress CY - Houston AN - OPUS4-44916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brieger, C. A1 - Melke, J. A1 - van der Bosch, N. A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - de Oliveira Guilherme Buzanich, Ana A1 - Krishna Kayarkatte, M. A1 - Schoeckel, A. A1 - Roth, C. T1 - A combined in-situ XAS-DRIFTS study unraveling adsorbate induced changes on the Pt nanoparticle structure N2 - The adsorption behavior of Platinum nanoparticles was studied for the as-received catalyst (under inert gas), under hydrogen and CO atmosphere using our newly designed in-situ cell. X-ray Absorption Spectroscopy (XAS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) experiments were performed simultaneously with high data quality. Structural information and the type of adsorbate could be revealed via Extended X-ray Absorption Fine Structure (EXAFS) analysis, Dl X-ray Absorption Near Edge Structure analysis (Dl XANES) and in-situ DRIFTS. The as-received catalyst showed sub-surface oxygen and O(n-fold). Under CO atmosphere only CO(atop) was found. Reversible adsorbate induced changes of the Pt nanoparticle structure were derived from changes in the PtAPt coordination number and the corresponding bond distance. Under reducing conditions (H2, CO) a significant increase in both values occurred. Temperature dependent desorption of CO revealed a gradual shift from PtACO to PtAO. Reoxidation was clearly assigned to strong metal support interaction from the SiO2 support. KW - X-ray absorption spectroscopy KW - DRIFTS KW - XANES KW - CO adsorption KW - Platinum KW - Strong metal support interaction KW - Silica support KW - Adsorbates KW - Infrared spectroscopy PY - 2016 U6 - https://doi.org/10.1016/j.jcat.2016.03.034 IS - 339 SP - 57 EP - 67 PB - Elsevier Inc. CY - Philadelphia, Pennsylvania, USA AN - OPUS4-35815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roth, C. A1 - Schalley, C. A. A1 - Unger, Wolfgang T1 - Incorporating mechanically interlocked molecules into crystalline coordination networks on surfaces: Electro-active SURMOFs to translate molecular switching into macroscopic function and devices N2 - We aim at preparing, characterising, and applying SURMOFs incorporating electro-active and -switchable mechanically interlocked molecules such as rotaxanes as the basis of functional devices. Preparation and Positioning Synthesis, purification and analytical characterization of electro-switchable rotaxanes suitable for SURMOF-formation as well as Layer-by-Layer assembly on surfaces. Controlled deposition of electro-active SURMOFs and Layer-by-Layer self-assembled multilayers based on these switchable rotaxanes. Construction of SURMOFs on micro-patterned surfaces. Structural Characterisation and Physico-Chemical Properties Electrochemical characterization of these rotaxanes in solution with cyclic voltammetry, chronoamperometry and impedance spectroscopy. Surface characterization of SURMOFs and multilayers with XPS, NEXAFS, AFM, contact-angle measurements, transmission UV/Vis, ToF-SIMS and – in cooperation with partners from SPP – XRD. Development of ToF-SIMS (also assisted by Principle Component Analysis of the fragment-ion data) as a method for imaging and depth-profiling. Development of an appropriate electrochemical cell to perform cyclic voltammetry, chronoamperometry and impedance spectroscopy with SURMOFS and multilayers as working electrodes in a three-electrode cell. Comparison of the structural and electrochemical properties of the redox-active unit in solution, multilayers and SURMOF focusing on the advantages of SURMOFs. System Integration and Function Demonstration Examination of the usability of the electroactive SURMOFS as optoelectronic switch or data storage device with a focus on the robustness of the system. Usage of the SURMOFs as functional electrodes for electrochemical application. Selective switching of ordered nanostructures to translate molecular motion to macroscopic property changes. T2 - Colloquium of the Priority Programme "Coordination Networks: Building Blocks for Functional Systems” SPP 1928 CY - Garching, Germany DA - 30.3.16 KW - SURMOF KW - XPS KW - NEXAFS KW - Characterization PY - 2016 AN - OPUS4-35868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akhmetova, Irina A1 - Beyer, Sebastian A1 - Schutjajew, K. A1 - Tichter, T. A1 - Wilke, Manuel A1 - Prinz, Carsten A1 - B. Martins, Inês C. A1 - Al-Sabbagh, Dominik A1 - Roth, C. A1 - Emmerling, Franziska T1 - Cadmium benzylphosphonates - the close relationship between structure and properties N2 - Cadmium benzylphosphonate Cd(O3PBn)·H2O and its fluorinated derivates Cd(O3PBn-3F)·H2O, Cd(O3PBn-4F)·H2O, and Cd(O3PBn-F5)·H2O were synthesized mechanochemically. The Crystal structures of the compounds were determined based on powder X-ray diffraction (PXRD) data. The influence of the ligand substitution on the crystal structure of the metal phosphonate was determined. The hydrophobicity as a function of degree of fluorination was investigated using dynamic vapor sorption. KW - Mechanochemistry KW - Metal phosphonates KW - PXRD KW - DVS PY - 2019 U6 - https://doi.org/10.1039/c9ce00776h VL - 21 SP - 5958 EP - 5964 PB - RSC Royal Society of Chemistry AN - OPUS4-49930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Birgit Angelika A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg A1 - Roth, C. A1 - Beier, O. A1 - Hartmann, A. A1 - Grünler, B. T1 - Decontamination of biocidal loaded wooden artworks by means of laser and plasma processing N2 - Many wooden artworks are contaminated by DDT (dichlorodiphenyltrichloroethane) as a result of a surface treatment by means of the liquid preservative Hylotox-59©. It was used until the end of the 1980s. DDT crystal structures are formed on the wood surfaces by the "blooming" of chlorine compounds. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Even decades after applying, the toxins in the wood preservatives are still detectable because they are of low volatility in many wood samples. Contaminated waste wood with natural biocide ageing, gilded and wood carved elements of an old picture frame and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen. Non-contact procedures using laser and plasma appear reasonable to remove the DDT crystals. During the experiments, health and safety issues for the operator have to be taken into account. The removal of DDT was evaluated employing femtosecond and nanosecond laser radiation and cold atmospheric plasma techniques with different working gases (air, nitrogen, and argon). Before laser application, a chlorine measurement representing the DDT density on the wooden surface is done by X-ray fluorescence (XRF) analysis as reference. After laser processing, the XRF analysis is used again at the same surface position to determine the depletion rate. Additionally, a documentation and characterization of the sample surface is performed before and after laser and plasma treatment using optical microscopy (OM). For plasma processing with various systems a chlorine measurement is done by gas chromatographic-mass spectrometry (GCMS) analysis. T2 - 11th Conference on Lasers in the Conservation of Artworks CY - Kraków, Poland DA - 20.09.2016 KW - Decontamination KW - DDT KW - Wooden artworks KW - Femtosecond laser KW - Cold atmospheric pressure plasma PY - 2017 SN - 978-83-231-3875-4 U6 - https://doi.org/10.12775/3875-4.17 SP - 241 EP - 251 PB - NCU Press CY - Toruń AN - OPUS4-43526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -