TY - CONF A1 - Rosemann, P. A1 - Heyn, Andreas A1 - Müller, Thoralf A1 - Babutzka, Martin A1 - Goebel, Michael T1 - Qualitätsbeurteilung von Schneidwaren mittels Elektrochemischen Rauschen T2 - GfKORR-Jahrestagung 2012 T2 - GfKORR-Jahrestagung 2012 CY - Frankfurt am Main, Germany DA - 2012-11-06 PY - 2012 AN - OPUS4-27047 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, P. A1 - Reinemann, Steffi A1 - Lehmann, Jens A1 - Babutzka, Martin A1 - Burkert, Andreas T1 - Ursachen korrosionsanfälliger Oberflächen bei geschliffenen nichtrostenden Stählen N2 - Ergebnisse aus dem AiF Forschungsvorhaben IGF 18823 N/1 "Optimierung von Korundschleifprozessen" Ein Referenzwerkstoff mit einem definierten Oberflächenzustand wurde zunächst umfassend mittels elektrochemischer Korrosionsuntersuchungen, KorroPad-Untersuchungen und oberflächenanalytischer Verfahren charakterisiert. Anhand definierter Schleifversuche an diesem Referenzzustand wurden anschließend verschiedene Schleifparameter variiert, deren Auswirkungen auf die Korrosionsbeständigkeit mit den gleichen Methoden beurteilt wurden. Somit war es möglich, den Einfluss einzelner Schleifparameter auf das Korrosionsverhalten aufzuzeigen. T2 - MDZ Forschungsseminar 2019 CY - Magdeburg, Germany DA - 12.03.2019 KW - Nichtrostender Stahl KW - Korrosionsschnelltest KW - KorroPad KW - Passivschicht PY - 2019 AN - OPUS4-47535 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinemann, Steffi A1 - Rosemann, P. A1 - Babutzka, Martin A1 - Lehmann, Jens A1 - Burkert, Andreas T1 - Influence of grinding parameters on the corrosion behavior of austenitic stainless steel JF - Materials and Corrosion N2 - Samples of the austenitic stainless steel grade X5CrNi18‐10 (1.4301, AISI 304) were ground industrially with various grinding parameters to study their influence on corrosion resistance. The ability of the mechanically ground surfaces to form a stable passive layer was evaluated by KorroPad test and a modified electrochemical potentiodynamic reactivation test based on a single loop (EPR‐SL). Furthermore, the surfaces were characterized by surface analytical methods. The main influence was determined regarding abrasive belt type. Surfaces mechanically ground with granulate abrasive belts constantly had a lower corrosion resistance than surfaces ground with single‐coated grain. The granulate abrasive belts generated more sensitized surface areas and left formations of welded sample material on the mechanically ground surfaces. A post‐treatment with a nonwoven abrasive proved to be an effective finishing process by which the surface defects and sensitized material got removed and the surfaces regained the expected corrosion resistance. KW - Abrasive belt KW - Austenitic stainless steel KW - Electrochemical potentiodynamic reactivation KW - Grinding KW - KorroPad KW - Surface KW - Corrosion PY - 2019 DO - https://doi.org/10.1002/maco.201910874 SN - 0947-5117 SN - 1521-4176 VL - 70 IS - 10 SP - 1776 EP - 1787 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-47871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Thoralf A1 - Heyn, Andreas A1 - Babutzka, Martin A1 - Rosemann, P. T1 - Examination of the influence of heat treatment on the corrosion resistance of martensitic stainless steels JF - Materials and corrosion N2 - Martensitic stainless steels are commonly used in cutlery fabrication requiring high hardness and sufficient corrosion resistance. The heat treatment process affects the mechanical and electrochemical behavior of martensitic stainless steels due to the precipitation of chromium carbides. Depending on the heat treatment the corrosion resistance of these steels can vary strongly, and improper heat treatment parameters can lead to a weak pitting corrosion resistance. The aim of this work is to identify heat treatment parameters influencing the corrosion resistance of martensitic stainless steels by using three different electrochemical testing methods. To this purpose, five different heat treatments were applied to the alloys 1.4116 and 1.4034. In addition to the determination of the critical pitting potentials and the modified double-loop electrochemical potentiodynamic reactivation tests (DL-EPR) a new KorroPad indicator test was used assessing the pitting corrosion behavior. The results showed that all methods used were in good agreement for verifying the influence of the various heat treatment parameters on the corrosion behavior and to identify the effect of heat treatment conditions on the pitting corrosion resistance. KW - DL-EPR KW - Heat treatment KW - KorroPad KW - Martensitic stainless steel KW - Pitting corrosion PY - 2015 DO - https://doi.org/10.1002/maco.201407861 SN - 0947-5117 SN - 1521-4176 VL - 66 IS - 7 SP - 656 EP - 662 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-33621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kauss, Norman A1 - Heyn, A. A1 - Michael, O. A1 - Schymura, M. A1 - Rosemann, P. T1 - Application limits and sensitisation behaviour of the manganese- and nitrogen-alloyed austenitic stainless steel P2000 (X13CrMnMoN18-14-3) JF - Materials and Corrosion N2 - Nickel‐free high‐nitrogen‐alloyed stainless steels like the P2000 (X13CrMnMoN18‐14‐3) were developed to enhance the strength and corrosion resistance of austenitic stainless steels like 304 and 316 while keeping the typical high ductility. The mechanical and corrosive properties of P2000 were investigated and compared with 304 and 316 to highlight the application opportunities of this new alloy. The microstructure of the solution‐annealed condition was characterised by electron backscatter diffraction and the mechanical properties were studied by uniaxial tensile tests, Charpy impact tests and hardness measurements. The passivation behaviour was analysed using the electrochemical potentiodynamic reactivation, whereas the pitting corrosion resistance was compared by pitting potentials and pitting temperatures. However, secondary thermal influences or suboptimal heat treatment can impair the corrosion resistance due to the precipitation of secondary phases and the resulting sensitisation. Thermodynamic calculations and artificial ageing treatment in the range of 500–900°C for up to 100 h were used to determine critical time–temperature parameters for sensitisation. The microstructure of the various aged states was evaluated by scanning electron microscopy and compared with the degrading corrosion resistance characterised by the KorroPad method. KW - Austenitic stainless steel KW - Electrochemical methods KW - High‐nitrogen steel KW - Mechanical properties KW - Corrosion resistance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527925 DO - https://doi.org/10.1002/maco.202112450 VL - 71 IS - 10 SP - 1656 EP - 1667 PB - Wiley-VCH GmbH AN - OPUS4-52792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -