TY - JOUR A1 - Droste, Bernhard A1 - Komann, Steffen A1 - Wille, Frank A1 - Rolle, Annette A1 - Probst, Ulrich A1 - Schubert, Sven T1 - Consideration of aging mechanism influence on transport safety of dual purpose casks for spent nuclear fuel of HLW JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - When storage of spent nuclear fuel or high level waste is carried out in dual purpose casks (DPC), the effects of aging on safety relevant DPC functions and properties have to be managed in a way that a safe transport after the storage period of several decades is capable and can be justified and certified permanently throughout that period. The effects of aging mechanisms (e.g. radiation, different corrosion mechanisms, stress relaxation, creep, structural changes and degradation) on the transport package design safety assessment features have to be evaluated. Consideration of these issues in the DPC transport safety case will be addressed. Special attention is given to all cask components that cannot be directly inspected or changed without opening the cask cavity, like the inner parts of the closure system and the cask internals, like baskets or spent fuel assemblies. The design criteria of that transport safety case have to consider the operational impacts during storage. Aging is not the subject of technical aspects only but also of ‘intellectual’ aspects, like changing standards, scientific/technical knowledge development and personal as well as institutional alterations. Those aspects are to be considered in the management system of license holders and in appropriate design approval update processes. The paper addresses issues that are subject of an actual International Atomic Energy Agency TECDOC draft 'Preparation of a safety case for a dual purpose cask containing spent nuclear fuel'. KW - Transport KW - Storage KW - Spent fuel KW - High-level waste KW - Aging KW - Metal seals KW - Transport and storage casks KW - Spent nuclear fuel KW - Aging mechanisms KW - Corrosion KW - Safety assessment PY - 2014 DO - https://doi.org/10.1179/1746510914Y.0000000070 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 3-4 SP - 105 EP - 112 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Droste, Bernhard T1 - Design Approval of Special Form Radioactive Material- Important Aspects T2 - Proceedings of the 18th International Symposium on the Packagings and Transport of radioactive Materials N2 - The design of a special form radioactive material has to resist a severe transport accident without undue loss or dispersal of radioactive material. Safety assessment by authorities competent for design approval has to include besides the required test program (impact, percussion, bending and heat test) also the evaluation of the quality management system for design, manufacture, testing, documentation, use, maintenance and inspection. These quality assurance measures have to assure that every specimen of the approved design is produced in the same verified quality and every specimen must be able to survive the severe mechanical and thermal tests without undue loss or dispersal of radioactive material at any time of its working life. All important aspects in the design approval procedure by BAM as the competent authority for approvals of special form radioactive material in Germany are summarized in a guideline published in 2014. This paper will give additional explanations to some aspects in safety assessment, e.g.: the applicability of leak test methods and the need to consider ageing aspects. T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - Transport KW - Radioactive material KW - Safety PY - 2016 SP - Paper 4004-22 AN - OPUS4-39912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -