TY - CONF A1 - Rolle, Annette A1 - Buhlemann, Lothar T1 - Quality assurance in production and use of special form radioactive material - focal points in BAM approvals N2 - BAM, as the competent authority for approval of special form radioactive material, attaches great importance to a detailed audit of the required quality assurance programmes for design, manufacture, testing, documentation, use, maintenance and inspection. Applicants have to submit, together with their application documentation, information on general arrangements for quality assurance, as well as on quality assurance in production and in operation. Fields where BAM has often found deficiencies are leak test methods, weld seam quality and the safety level after use. T2 - 14th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Berlin, Germany DA - 2004-09-20 KW - Zulassung KW - Special form KW - Qualitätssicherung PY - 2004 IS - 235 SP - 1(?) EP - 5(?) PB - BAM CY - Berlin AN - OPUS4-11190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rolle, Annette A1 - Buhlemann, Lothar T1 - Quality assurance in production and use of special form radioactive material - focal points in BAM approvals N2 - BAM, as the competent authority for approval of special form radioactive material, attaches great importance to a detailed audit of the required quality assurance programmes for design, manufacture, testing, documentation, use, maintenance and inspection. Applicants have to submit, together with their application documentation, information on general arrangements for quality assurance, as well as on quality assurance in production and in operation. Fields where BAM has often found deficiencies are leak test methods, weld seam quality and the safety level after use. PY - 2004 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 15 IS - 2 SP - 101 EP - 103 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-7278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rolle, Annette A1 - Rödel, Roland T1 - Qualitätssicherung bei Herstellung und Betrieb von radioaktiven Stoffen in besonderer Form - ein Schwerpunkt im Zulassungsverfahren durch die BAM KW - Qualitätssicherung KW - Radioaktive Stoffe KW - Besondere Form PY - 2005 SN - 0947-434X IS - 2 SP - 45 EP - 47 PB - Verl. TÜV Rheinland CY - Köln AN - OPUS4-7029 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Droste, Bernhard T1 - Leakage testing of sealed sources T2 - 13th International Congress of the International Radiation Protektion Association CY - Glasgow, Scotland DA - 2012-05-13 PY - 2012 AN - OPUS4-25974 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Probst, Ulrich A1 - Ballheimer, Viktor A1 - Müller, Karsten A1 - Winkler, H. P. T1 - Transport Condition effectis on the sealing system and activity release within spent fuel transport casks T2 - Radioactive Materials Transport and Storage Conference CY - London, England DA - 2012-05-22 PY - 2012 AN - OPUS4-25975 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Rolle, Annette A1 - Droste, Bernhard T1 - Mechanical behaviour of high burn-up SNF under normal and accident transport conditions - present approaches and perspectives N2 - Transport packages for spent fuel have to meet the International Atomic Energy Agency requirements for different transport conditions. Physical state of spent fuel and fuel rod cladding as well as geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. In this paper, the mechanical behaviour of high burn-up spent fuel assemblies under transport conditions is analysed with regard to assumptions to be used in the activity release and criticality safety analysis. In particular the different failure modes of the fuel rods (fine cracks or complete breakage), which can cause release of gas, volatiles, fuel particles or fragments have to be properly considered in these assumptions. In view of the complexity of interactions between the fuel rods as well as between fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally. In this context some practical approaches based on experiences of BAM Federal Institute for Material Research and Testing within safety assessment of packages for transport of spent fuel are discussed. T2 - ASME 2012 Pressure vessels & piping division conference CY - Toronto, Ontario, Canada DA - 15.07.2012 KW - Fuel rods KW - High burn-up KW - Mechanical behaviour KW - Transport conditions PY - 2012 SP - PVP2012-78302, 1-7 PB - American Society of Mechanical Engineers CY - New York AN - OPUS4-26320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Droste, Bernhard A1 - Dombrowski, H. T1 - Type testing of devices with inserted radioactive sources T2 - 2nd European IRPA Congress on Radiation Protection CY - Paris, France DA - 2006-05-15 KW - Radiation protection KW - Type approval PY - 2006 SP - 1(?) EP - 6(?) PB - IRPA CY - Paris AN - OPUS4-12815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rolle, Annette A1 - Droste, Bernhard A1 - Schubert, Sven A1 - Probst, Ulrich A1 - Wille, Frank T1 - Verification of activity release compliance with regulatory limits within spent fuel transport cask assessment N2 - Admissible limits for activity release from type B(U) packages for spent fuel transport specified in the International Atomic Energy Agency regulations (10-6 A2 h-1 for normal conditions of transport and A2 per week for accidental conditions of transport) have to be kept by an appropriate function of the cask body and its sealing system. Direct measurements of activity release from the transport casks are not feasible. Therefore, the most common method for the specification of leak tightness is to relate the admissible limits of activity release to equivalent standardised leakage rates. Applicable procedure and calculation methods are summarised in the International Standard ISO 12807 and the US standard ANSI N14·5. BAM as the German competent authority for mechanical, thermal and containment assessment of packages liable for approval verifies the activity release compliance with the regulatory limits. Two fundamental aspects in the assessment are the specification of conservative design leakage rates for normal and accidental conditions of transport and the determination of release fractions of radioactive gases, volatiles and particles from spent fuel rods. Design leakage rates identify the efficiency limits of the sealing system under normal and accidental transport conditions and are deduced from tests with real casks, cask models or components. The releasable radioactive content is primarily determined by the fraction of rods developing cladding breaches and the release fractions of radionuclides due to cladding breaches. The influence of higher burn-ups on the failure probability of the rods and on the release fractions are important questions. This paper gives an overview about methodology of activity release calculation and correlated boundary conditions for assessment. KW - Containment compliance KW - Seals KW - Regulations KW - Activity release PY - 2012 U6 - https://doi.org/10.1179/1746510913Y.0000000012 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 23 IS - 3-4 SP - 149 EP - 152 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-29244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rolle, Annette A1 - Droste, Bernhard T1 - Safety during whole life time: important aspect in safety assessment of sealed radioactive sources N2 - Many sealed sources with long halflife isotopes commonly used in industry or medicine have a long working life, up to several decades. Source integrity must be guaranteed in transport and use at any time. On the one hand, safety during the working life has to be ensured by the source design. Its strain has to be tested. On the other hand, source durability depends on the specific operating conditions. BAM as the competent authority in Germany has to assess the suitability of a source design for safe transport and use also for a longer service life for: (a) sources approved as special form radioactive material according to the regulations for the safe transport of radioactive material, (b) sources in approved devices for licence free use according to the Radiation Protection Ordinance, Para 25, and (c) sources with an extended leak test period according to Radiation Protection Ordinance, Para 66. In all these domains BAM has to assess if design and additional arrangements are qualified and guaranteed to prevent a release of radioactive content under the mechanical, chemical and physical operating conditions of the specified working life of a sealed radioactive source. As a result, limits for the duration of validity of the special form status of a source or a type approval of a device are specified and, in many cases, special additional responsibilities for users, such as periodical control and test measurements, have to be specified in approval certificates as binding conditions to satisfy the required safety standards in regulations. This paper presents BAM's experiences and shows which aspects should be considered in assessment of a lifetime limit of sealed sources. KW - Radioactive KW - Sealed sources KW - Aging PY - 2008 U6 - https://doi.org/10.1179/174651008X344458 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 19 IS - 3 SP - 151 EP - 154 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-18741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Droste, Bernhard T1 - Safety during whole life time - An important aspect in safety assessment of sealed radioactive sources T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 PY - 2007 IS - (Abstract # 53) SP - 1 EP - 7 PB - Institute of Nuclear Materials Management AN - OPUS4-18742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Probst, Ulrich A1 - Ballheimer, Viktor A1 - Müller, Karsten A1 - Winkler, H. P. T1 - Transport condition effects on the sealing system and activity release within spent fuel transport casks T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 2012-05-22 KW - Radioactive material KW - Safety assessment KW - Spent fuel KW - Leak tightness PY - 2012 SP - 1 EP - 9(?) AN - OPUS4-26498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Wille, Frank ED - Czarwinski, R. T1 - Radioaktive Stoffe in besonderer Form-wichtige Aspekte im Zulassungsverfahren N2 - Für die Beförderung von umschlossenen radioaktiven Stoffen (Strahler) können Transporterleichterungen gelten, wenn das Strahlerdesign nachweislich unfallsicher ausgelegt ist und eine Zulassung als radioaktiver Stoff in besonderer Form vorliegt. Die in Deutschland zuständige Behörde für die Prüfung und Zulassung radioaktiver Stoffe in besonderer Form ist die Bundesanstalt für Materialforschung und –prüfung (BAM). Eine oft langfristige Nutzung der Strahler kann eine alterungsbedingte Schwächung der Umschließung des radioaktiven Stoffes zur Folge haben. Jeder Strahler einer zugelassenen Bauart muss jedoch im Beförderungsfall zu jeder Zeit, auch nach längerer Nutzung, den vorgeschriebenen Prüfanforderungen genügen. Die Alterungsbewertung auf der Grundlage einer vom Antragsteller zu spezifizierenden Nutzungsdauer des radioaktiven Stoffes in besonderer Form ist seit langer Zeit Bestandteil des Zulassungsverfahrens in Deutschland. Ein von Deutschland eingebrachter Vorschlag im Rahmen der anstehenden Revision der IAEA Empfehlungen für die sichere Beförderung von radioaktiven Stoffen (SSR-6) soll die Lesbarkeit des Regelwerkes bezüglich der Alterungsbewertung verbessern, Klarheit über die damit verbundenen Anforderungen erzeugen und damit zu einer Harmonisierung der Zulassungsverfahren auf internationaler Ebene beitragen. In diesem Beitrag sollen wichtige Einflussfaktoren auf das Alterungsverhalten von radioaktiven Stoffen in besonderer Form aufgezeigt und die Notwendigkeit für die Spezifikation einer Nutzungsdauer als Grundlage für die Alterungsbewertung begründet werden. Der deutsche Vorschlag für die Revision des IAEA Regelwerks zum sicheren Transport radioaktiver Stoffe (SSR-6) wird vorgestellt und erläutert. T2 - Jahrestagung des FS 2022 CY - Konstanz, Germany DA - 26.09.2022 KW - Strahlenschutz KW - Radioaktive Stoffe KW - Beförderung KW - Zulassung PY - 2022 SN - 1013-4506 SP - 15 EP - 20 PB - Fachverband für Strahlenschutz e.V. CY - Berlin AN - OPUS4-56134 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Wille, Frank T1 - Radioaktive Stoffe in besonderer Form - wichtige Aspekte im Zulassungsverfahren N2 - Für die Beförderung von umschlossenen radioaktiven Stoffen (Strahler) können Transporterleichterungen gelten, wenn das Strahlerdesign nachweislich unfallsicher ausgelegt ist und eine Zulassung als radioaktiver Stoff in besonderer Form vorliegt. Die in Deutschland zuständige Behörde für die Prüfung und Zulassung radioaktiver Stoffe in besonderer Form ist die Bundesanstalt für Materialforschung und –prüfung (BAM). Eine oft langfristige Nutzung der Strahler kann eine alterungsbedingte Schwächung der Umschließung des radioaktiven Stoffes zur Folge haben. Jeder Strahler einer zugelassenen Bauart muss jedoch im Beförderungsfall zu jeder Zeit, auch nach längerer Nutzung, den vorgeschriebenen Prüfanforderungen genügen. Die Alterungsbewertung auf der Grundlage einer vom Antragsteller zu spezifizierenden Nutzungsdauer des radioaktiven Stoffes in besonderer Form ist seit langer Zeit Bestandteil des Zulassungsverfahrens in Deutschland. Ein von Deutschland eingebrachter Vorschlag im Rahmen der anstehenden Revision der IAEA Empfehlungen für die sichere Beförderung von radioaktiven Stoffen (SSR-6) soll die Lesbarkeit des Regelwerkes bezüglich der Alterungsbewertung verbessern, Klarheit über die damit verbundenen Anforderungen erzeugen und damit zu einer Harmonisierung der Zulassungsverfahren auf internationaler Ebene beitragen. In diesem Beitrag sollen wichtige Einflussfaktoren auf das Alterungsverhalten von radioaktiven Stoffen in besonderer Form aufgezeigt und die Notwendigkeit für die Spezifikation einer Nutzungsdauer als Grundlage für die Alterungsbewertung begründet werden. Der deutsche Vorschlag für die Revision des IAEA Regelwerks zum sicheren Transport radioaktiver Stoffe (SSR-6) wird vorgestellt und erläutert. T2 - Jahrestagung des FS 2022 CY - Konstanz, Germany DA - 26.09.2022 KW - Strahlenschutz KW - Radioaktive Stoffe KW - Beförderung KW - Alterung KW - Zulassung PY - 2022 AN - OPUS4-56137 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Safety assessment of aged metal seals N2 - With our experiments we want to simulate a load situation which can result from a cask vertical drop test. The lid can lift a little for a very short moment and that can perhaps result in a little movement of the seal, a little rotation or a little lateral movement, so that the contact section can change. The aim of the project is to learn more about the sealing efficiency after the seal is compressed again. What we know from former component tests with non-aged seals is, that the leakage rate measured after one or more decompression /compression cycles with seal movement becomes significant higher. And this result is considered for specification of design leakage rates for release calculation in safety cases. In the recent years we all have learned more about the significant influence of temperature and time on seal behavior and so the plan was to do similar experiments with aged seals, just to get an idea about seal behavior and achievable leakage rates. What we did in detail is: We compressed Helicoflex-seals of both design types, with Aluminum and Silver outer jackets, in testflanges and aged them in an oven at a temperature of 125°C for 3 months to produce seal properties comparable with properties after several years use at more typical operating temperatures between 90 and 100°C. After this ageing procedure we opened the flanges completely, moved the seal a little to vary the contact area and compressed the flanges again. What we measured during all compression and decompression cycles was the load, the deformation and -as long as possible- the leakage rates. T2 - Workshop IRSN/BAM CY - Cadarache, France DA - 12.10.2022 KW - Transport KW - Radioactive KW - Seal behavior KW - Ageing PY - 2022 AN - OPUS4-56141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Vlassopoulos, Efstathios A1 - Papaioannou, Dimitrios T1 - Numerical Simulation of Spent Fuel Segments under Transport Loads N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. Generally, the mechanical behavior of high burn-up spent fuel assemblies under transport conditions shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. Considering the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in Information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated additionally. As a result, enveloping analytical approaches are usually used by BAM within the safety assessment of packages approved for transport of spent nuclear fuel. To justify the safety margins of such approaches additional analyses are necessary. In this paper, numerical simulations of a spent fuel assembly Segment are presented. The segment modeled represents the part of a generalized BWR fuel assembly between two spacers. Dynamic and quasi-static finite element calculations are performed to simulate the spent fuel behavior under regulatory defined accident conditions of transport. Beam elements are used for the modeling of the fuel rods representing the compound consisting of claddings and fuel pellets. The dynamic load applied is gathered from an experimental drop test with a spent fuel cask performed at BAM. A hot cell bending test performed at JRC Karlsruhe is the basis for obtaining the material behavior of the fuel rods. The material properties are determined by simulating the test setup of JRC and optimizing the results to fit the experimental load deflection curve. The simulations of the fuel assembly segment are used to get a better understanding about the loads on fuel rods under accident conditions of transport. T2 - 17th International High-Level Radioactive Waste Management Conference (IHLRWM 2019) CY - Knoxville, Tennessee, USA DA - 14.04.2019 KW - Spent Nuclear Fuel KW - Finite Element Simulation KW - Transport packages PY - 2019 SN - 978-1-51088-669-8 SP - 1 EP - 7 AN - OPUS4-52046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Droste, Bernhard A1 - Neumeyer, Tino T1 - Übersicht über die Prüftätigkeit der BAM im Bereich der umschlossenen radioaktiven Stoffe T2 - Behördenseminar Bauartzulassungen nach RöV und StrlSchV - Staturs und Ausblick CY - Berlin, Germany DA - 2014-01-22 PY - 2014 AN - OPUS4-30677 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Droste, Bernhard T1 - Important aspects in design approval of special form radioactive material T2 - ISSPA Annual General Meeting 2014 Workshop, Source Security in Transport and Source Control CY - Washington, D.C., USA DA - 2014-02-26 PY - 2014 AN - OPUS4-30678 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Droste, Bernhard T1 - Testing of sealed radioactive sources at BAM N2 - Requirements and test programs for sealed radioactive sources are specified in international standards for safety in transport and in use. Sealed sources which are approved as special form radioactive material according to the Transport Regulations, IAEA Safety Standards TS-R-1, must be able to withstand mechanical (9 m drop, percussion and bending) and thermal (800°C heat) tests without loss of radioactive content. The International Standard ISO 2919 provides a set of tests which classifies the sources for their safety in use. Performance tests specified in this standard are temperature (high and low), external pressure, impact, vibration and puncture tests. Each test can be applied at different levels of intensity depending on typical usage. As a criterion of pass or fail, leakage testing has to be done after each test. The poster gives an overview of BAM s comprehensive test equipment and experience in testing sealed radioactive sources. T2 - 3rd European IRPA Congress CY - Helsinki, Finland DA - 2010-06-14 KW - Radioactive KW - Sealed sources KW - Testing PY - 2010 SN - 978-952-478-551-8 IS - P18-07 SP - 2749 EP - 2754 CY - Helsinki AN - OPUS4-23420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Müller, Lars A1 - Rolle, Annette A1 - Wille, Frank A1 - Droste, Bernhard T1 - Aspects of spent fuel behavior assessment for transport packages N2 - Transport packages for spent nuclear fuel have to be assessed with respect to specific transport conditions which are defined in the safety regulations of the International Atomic Energy Agency. In general, gastight fuel rods constitute the first barrier of the containment system. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important inputs for the evaluation of the package safety under transport conditions. The objective of this paper is to discuss the methodologies accepted by BAM for the authority assessment of spent fuel behavior within the package design approval procedure of German package designs. In particular, cracks or failures in the fuel rod cladding can occur under regulatory transport conditions. These defects can cause the release of gas, volatiles, fuel particles or fragments into the package cavity and have to be considered properly in the safety analysis. Another issue is the transport of defective fuel rods. One concept is to use special canisters which can be handled like fuel assemblies. This concept requires additional assessment concerning drying, sealing and the mechanical and thermal design of such canisters. The package as a mechanical system is characterized by a complex set of interactions, e.g. between the fuel rods within the assembly as well as between the fuel assemblies, the basket, and the cask containment. This complexity together with the limited knowledge about the material properties and the variation of the fuel assemblies regarding cladding material, burn-up and the operation history makes an exact mechanical analysis of the fuel rods nearly impossible. The simplified approaches to consider conservatively spent fuel behavior currently accepted by BAM are presented here. T2 - International Conference on Management of Spent Fuel from Nuclear Power Reactors - An Integrated Approach to the Back-End of the Fuel Cycle CY - Wien, Austria DA - 15.06.2015 KW - Transport packages KW - Spent fuel assessment PY - 2015 SP - 1 AN - OPUS4-38102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Droste, Bernhard T1 - Important Aspects in Design Approval of Special Form Radioactive Material T2 - International Conference on Radioactive Materials Transport and Storage RAMTRANS 2015 CY - Oxford, UK DA - 2015-06-19 PY - 2015 AN - OPUS4-33753 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Droste, Bernhard A1 - Schubert, Sven A1 - Probst, Ulrich A1 - Wille, Frank T1 - Verification of activity release compliance with regulatory limits within spent fuel transport casks T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Radioactive material KW - Safety assessment KW - Leakage mechanism KW - Leakage rate KW - Sealing behavior PY - 2010 SP - 1 EP - 8(?) AN - OPUS4-32193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Winkler, H. P. A1 - Probst, Ulrich A1 - Ballheimer, Viktor A1 - Neumeyer, Tino T1 - Verification of design leakage rates for activity release calculation N2 - The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of the sealing system of transport casks for spent fuel and high radioactive waste. Applicants are requested by BAM to provide test programmes for verification of design leakage rates of the sealing system under the possible loads. Two test series initiated to clarify the dependency of the standard leakage rate on dynamic lid displacement as well as the dependency of the useful elastic recovery ru of a metallic seal on temperature and time, are outlined in this paper as examples of present investigations: Sliding tests simulating a lid displacement possible by a horizontal drop of the cask are carried out at the controlled drop test facility of BAM with test flange pairs equipped with metallic Helicoflex seals. For specification of covering values for the useful elastic recovery ru GNS has started a very comprehensive test programme with overall 70 metallic seals installed in test flanges which are stored for a period of one year at three different temperatures up to 150°C. This paper gives an overview about the current approach of BAM in the assessment of cask tightness and informs about the status of the running test series. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 2013-08-18 KW - Radioactive material KW - Safety assessment KW - Leakage rate KW - Leak tightness KW - Sealing behavior PY - 2013 SP - 1 EP - 7 PB - Omnipress AN - OPUS4-32194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Droste, Bernhard T1 - Testing of sealed radioactive sources at BAM T2 - IRPA 2010, Third European International radiation Association Congress CY - Helsinki, Finnland DA - 2010-06-14 PY - 2010 AN - OPUS4-32252 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Dombroski, H. T1 - Type testing of diveices with inserted radioactive sources T2 - IRPA 2006, Second European International radiation Protection Association Congress CY - Paris, Frankreich DA - 2006-05-15 PY - 2006 AN - OPUS4-32253 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Droste, Bernhard T1 - Safety during whole life time-an important aspect in safety assessment of sealed radioactive sources T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of radioactive materials CY - Miami, USA DA - 2007-10-21 PY - 2007 AN - OPUS4-32254 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Buhlemann, Lothar T1 - Quality assurance in production and use of spcial form radioactive material - focal points in BAM approvals T2 - PATRAM 2004, 14th International Symposium on the Packaging and Transportation of radioactive materials CY - Berlin, Germany DA - 2004-09-20 PY - 2004 AN - OPUS4-32255 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Droste, Bernhard T1 - Design leakage rates for activity release calculation T2 - Sandia Naterial Lab - BAM workshop, 6-8. October 2014 CY - Albuquerque, USA DA - 2014-10-06 PY - 2014 AN - OPUS4-32256 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette T1 - Boundary conditions for verification of activity release compliance with regulatory limits T2 - Argonne National Lab - BAM workshop 15./16. October 2014 CY - Chicago, USA DA - 2014-10-15 PY - 2014 AN - OPUS4-32257 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Winkler, H. P. A1 - Probst, Ulrich A1 - Ballheimer, Viktor A1 - Neumeyer, Tino T1 - Verrification of design leakage rates for activity release calculation T2 - PATRAM 2013, 17th International Symposium on the Packaging and Transporttion of radioactive Material CY - San Francisco, USA DA - 2013-08-18 PY - 2013 AN - OPUS4-32258 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Droste, Bernhard A1 - Schubert, Sven A1 - Probst, Ulrich A1 - Wille, Frank T1 - Verification of activity release cpmpliance with regulatory limits within spent fuel transport casks T2 - PATRAM 2010, 16th Interntional Symposium on the Packaging and Transport of Radioactive Materials CY - London, UK DA - 2010-10-03 PY - 2010 AN - OPUS4-32259 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Droste, Bernhard A1 - Komann, Steffen A1 - Wille, Frank A1 - Rolle, Annette A1 - Probst, Ulrich A1 - Schubert, Sven T1 - Consideration of aging mechanism influence on transport safety of dual purpose casks for spent nuclear fuel of HLW N2 - When storage of spent nuclear fuel or high level waste is carried out in dual purpose casks (DPC), the effects of aging on safety relevant DPC functions and properties have to be managed in a way that a safe transport after the storage period of several decades is capable and can be justified and certified permanently throughout that period. The effects of aging mechanisms (e.g. radiation, different corrosion mechanisms, stress relaxation, creep, structural changes and degradation) on the transport package design safety assessment features have to be evaluated. Consideration of these issues in the DPC transport safety case will be addressed. Special attention is given to all cask components that cannot be directly inspected or changed without opening the cask cavity, like the inner parts of the closure system and the cask internals, like baskets or spent fuel assemblies. The design criteria of that transport safety case have to consider the operational impacts during storage. Aging is not the subject of technical aspects only but also of ‘intellectual’ aspects, like changing standards, scientific/technical knowledge development and personal as well as institutional alterations. Those aspects are to be considered in the management system of license holders and in appropriate design approval update processes. The paper addresses issues that are subject of an actual International Atomic Energy Agency TECDOC draft 'Preparation of a safety case for a dual purpose cask containing spent nuclear fuel'. KW - Transport KW - Storage KW - Spent fuel KW - High-level waste KW - Aging KW - Metal seals KW - Transport and storage casks KW - Spent nuclear fuel KW - Aging mechanisms KW - Corrosion KW - Safety assessment PY - 2014 U6 - https://doi.org/10.1179/1746510914Y.0000000070 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 3-4 SP - 105 EP - 112 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Wille, Frank A1 - Feldkamp, Martin A1 - Rolle, Annette T1 - Aspects of gas generation caused by residual water inside ILW packages N2 - Packages for intermediate level waste (ILW) often contain residual water besides the actual waste. The water either exists as obvious free water or it may be bound physically or chemically, e.g. as pore water. Water driven gas generation could occur by vaporisation and by radiolysis. Steam as the result of vaporisation causes an increasing pressure inside a package and can affect corrosion. Vaporisation and condensation processes itself change the thermal behaviour of the content especially during strongly unsteady thermal situations like accident fire situations. Radiolysis changes the chemical composition of the content which could cause an unexpected interaction, e.g. hydrogen embrittlement. Besides the pressure build-up the radiolysis of water generates hydrogen and oxygen, which can be highly flammable respectively explosive. The gas generation caused by vaporisation and radiolysis must be taken into account during the design and the safety assessment of a package. Pressure build-up, a changed thermal behaviour and content chemistry, and especially the risk of accumulation of combustible gases exceeding the limiting concentration for inflammability has to be considered in the safety assessment. Approaches to ensure the transportability of stored packages due to radiolysis will be discussed. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Typ-B KW - ILW package KW - Gas generation KW - Radiolysis KW - Wet content PY - 2015 SP - 1 EP - 7 AN - OPUS4-33429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Droste, Bernhard T1 - Mechanical behaviour of high burn-up SNF under normal and accident transport conditions - present approaches and perspectives - T2 - PSAM 11 ESREL 2012 - 11th International probabilistic safety assessment and management conference & The annual european safety and reliability conference CY - Helsinki, Finland DA - 2012-06-25 KW - Spent fuel KW - High burn-up KW - Transport conditions KW - Mechanical analysis PY - 2012 SP - 1 EP - 9(?) AN - OPUS4-33850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Droste, Bernhard A1 - Komann, Steffen A1 - Wille, Frank A1 - Rolle, Annette A1 - Probst, Ulrich A1 - Schubert, Sven T1 - Considerations of aging mechanisms influence on transport safety and reliability of dual purpose casks for spent nuclear fuel or HLW N2 - When storage of spent nuclear fuel (SNF) or high-level waste (HLW) is done in dual purpose casks (DPC), the effects of aging on safety relevant DPC functions and properties have to be managed in a way that a safe transport after the storage period of several decades is capable, and can be justified and certified permanently throughout that period. The effects of aging mechanisms (like e.g. radiation, different corrosion mechanisms, stress relaxation, creep, structural changes and degradation) on the transport package design safety assessment features have to be evaluated. The consideration of these issues in the DPC transport safety case will be addressed. Special attention is given to all cask components which cannot be directly inspected or changed without opening the cask cavity, what are the inner parts of the closure system and the cask internals, like baskets or spent fuel assemblies. The design criteria of that transport safety case have to consider the operational impacts during storage. Aging is not subject of technical aspects only, but also of 'intellectual' aspects, like changing standards, scientific/ technical knowledge development and personal as well as institutional alterations. Those aspects are to be considered in the management system of the license holders and in appropriate design approval update processes. The paper addresses issues which are subject of an actual IAEA TECDOC draft 'Preparation of a safety case for a dual purpose cask containing spent nuclear fuel'. T2 - PSAM 12 - Probabilistic safety assessment and management CY - Honolulu, Hawaii, USA DA - 22.06.2014 KW - Transport and storage casks for spent nuclear fuel or high level waste KW - Aging mechanisms KW - Corrosion KW - Safety assessment KW - Metal seals KW - Closure system KW - Spent fuel/high-level waste KW - Dual purpose casks KW - Metal seals reliability KW - Cesium corrosion PY - 2014 UR - http://psam12.org/proceedings/paper/paper_180_1.pdf SP - 1 EP - 10 AN - OPUS4-32518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Wille, Frank A1 - Rolle, Annette A1 - Linnemann, Konrad T1 - Effects of additional gases resulting from residual water inside ILW packages N2 - Packages for intermediate level waste (ILW) often contain residual water besides the actual waste. The water either exists as obvious free water or it may be bound physically or chemically, e.g. as pore water. A water driven gas generation could occur by vaporisation and by radiolysis. Steam as the result of vaporisation causes an increasing pressure inside a package and can affect corrosion. Vaporisation and condensation processes itself change the thermal behavior of the content especially during strongly unsteady thermal situations like accident fire situations. Radiolysis changes the chemical composition of the content which could cause an unexpected interaction, e.g. hydrogen embrittlement. Besides the pressure build-up the radiolysis of water generates hydrogen and oxygen, which can be highly flammable respectively explosive. The gas generation caused by vaporisation and radiolysis must be taken into account during the design and the safety assessment of a package. Pressure build-up, a changed thermal behavior and content chemistry, and especially the risk of accumulation of combustible gases exceeding the limiting concentration for flammability has to be considered in the safety assessment. Approaches to ensure the transportability of stored packages due to radiolysis will be discussed. T2 - ASME 2016 Pressure Vessels & Piping Conference (PVP2016) CY - Vancouver, BC, Canada DA - 17.07.2016 KW - Radioactive material KW - Pressure build-up KW - Gas generation PY - 2016 SN - 978-0-7918-5045-9 VL - 7 SP - Paper 63008, 1 EP - 6 AN - OPUS4-38451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Nasyrow, R. A1 - Papaioannou, D. A1 - Rondinella, V. A1 - Vlassopoulos, E. A1 - Pautz, A. T1 - Finite element modeling of spent fuel rod segments under bending loads N2 - Transport packages for spent nuclear fuel have to be assessed with respect to specific transport conditions which are defined in the regulations of the International Atomic Energy Agency. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important Inputs for the evaluation of the package capabilities under These conditions. Cracks or failures in the fuel rod cladding can cause the release of gas, volatiles or fuel particles into the cavity. The amount of substances in the cavity has to be considered in the assessment of the activity release and criticality safety. The mechanical analysis of the compound system formed by the fuel rod cladding and the spent fuel pellets is very difficult due to the limited knowledge of the material properties and the insufficient understanding of the interaction between pellets and cladding and between adjacent pellets. The variation of fuel assembly properties regarding cladding material, burn-up and the history of usage makes reliable predictions of the fuel rod behavior even harder. For a better understanding about the behavior of spent fuel rods, JRC and BAM have started a joint research project. In this context, JRC has developed a test device which allows quasi-static 3-point-bending test on fuel rod segments in the hot cell. The loads are applied with respect to the boundary conditions of the activity release assessment. This paper deals with the numerical calculation of a single fuel rod segment under bending load. The aim is to identify the governing mechanical parameters by the variation of constitutive assumptions, contact conditions, inner constraints, etc. This knowledge helps for the interpretation of the experimental results. Furthermore, the improved understanding about the behavior of the cladding-pellets system will be beneficial for the assessment of spent fuel transport conditions. T2 - SMIRT24 - 24th Conference on Structural Mechanics in Reactor Technology CY - Busan, Korea DA - 20.08.2017 KW - Finite element methods KW - Spent fuel assessment KW - Transport packages PY - 2017 SP - 1 EP - 8 AN - OPUS4-45316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank T1 - Special form radioactive material (SFRM)- kick off discussion for harmonisation of approval procedure and certificate N2 - Exchange of experiences in SFRM approval procedure, Possibilities for harmonisation. Support for preparation of proposal for the next IAEA SSR-6/ SSG-26 revision process concerning. Special Form Radioactive Material (SFRM)-working life. T2 - European Association of Competent Authorities for safe Transport of Radioactive Material, Meeting 15 CY - Athen, Greece DA - 15.05. 2019 KW - Ageing behaviour KW - Radioactive sources KW - Approval PY - 2019 AN - OPUS4-48061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The containment systems of transport and storage casks for spent fuel and highlevelradioactive waste usually include bolted lids with metallic or elastomeric seals. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of such containment system. Scaled cask models are often used for providing the required mechanical and thermal tests series.Leak tests have been conducted on those models. It is also common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions of the transferability of scaled test results to the full size design of the containment system will be discussed. T2 - PATRAM 2019 CY - New Orleans, USA DA - 04.08.2019 KW - Leakage rate KW - Transport packages KW - Seals KW - Radioaktive PY - 2019 AN - OPUS4-49052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The containment systems of transport and storage casks for spent fuel and highlevelradioactive waste usually include bolted lids with metallic or elastomeric seals. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of such containment system. Scaled cask models are often used for providing the required mechanical and thermal tests series.Leak tests have been conducted on those models. It is also common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions of the transferability of scaled test results to the full size design of the containment system will be discussed. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Leakage rate KW - Transport packages KW - Seals KW - Radioaktive PY - 2019 SP - Paper 1147, 1 AN - OPUS4-49053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank ED - Baraldi, P. ED - Di Maio, F. ED - Zio, E. T1 - Ageing aspect in the safety evaluation of special form radioactive material N2 - In accordance with the IAEA transport regulations Special Form Radioactive Material (SFRM) is either an indispersible solid radioactive material or a sealed capsule containing radioactive material. The design of special form radioactive material has to resist a severe transport accident without undue loss or dispersal of radioactive material. The safety assessment for design approval shall include besides the required test program (impact, percussion, bending and heat test) also the evaluation of the management system for design, manufacture, testing, documentation, use, maintenance and inspection. The specified quality assurance measures have to assure, that every specimen of the approved design is produced in the same verified quality and every specimen must be able to survive the severe mechanical and thermal tests at any time of its working life. Due to the long-term use of SFRM the consideration of ageing is an important aspect in the approval procedure by BAM, the competent authority for SFRM approval in Germany. Different fields of application imply a wide range of environmental conditions, from clean room atmosphere to highly aggressive industrial conditions. So, besides of radioactive content, corrosion is a main factor for possible design degradation. This paper will describe major influencing factors to be taken into account to assess the ageing behavior of a SFRM design and will emphasize that there is a need for a regulatory specification of a SFRM-working life as basis for the aging evaluations. T2 - 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15) CY - Online meeting DA - 01.11.2020 KW - Special form radioactive material KW - Transport KW - Ageing KW - Material KW - Safety assessment KW - Management system PY - 2020 UR - https://www.rpsonline.com.sg/proceedings/esrel2020/html/3659.xml SN - 987-981-14-8593-0 SP - Paper 3659,1 EP - 5 PB - Research Publishing CY - Singapore AN - OPUS4-50969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rolle, Annette A1 - Neumeyer, Tino T1 - Prüfung und Zulassung von radioaktiven Stoffen in besonderer Form N2 - Radioaktive Stoffe in besonderer Form (SFRM) sind nicht dispergierbare feste radioaktive Stoffe oder dichte Kapseln, die radioaktive Stoffe enthalten /1/. SFRM sind eine Kategorie innerhalb der verkehrsrechtlichen Vorschriften. Für die Beförderung zu Anwendern in der Industrie, Medizin und Forschung werden umschlossene radioaktive Stoffe (Strahler) gemäß ihrem aktivitätsabhängigen Gefahrenpotenzial verpackt. Strahler mit einer hohen Aktivität (> A2) erfordern entsprechend der verkehrsrechtlichen Vorschriften eine Beförderung in Typ B (U) Versandstücken, die als unfallsicher gelten. Alternativ besteht bis zu einer Aktivität < A1 die Möglichkeit der Beförderung in nicht unfallsicheren Typ A Versandstücken, wenn die Strahler nachweislich unfallsicher ausgelegt sind und eine Zulassung als SFRM vorliegt. Die Bundesanstalt für Materialforschung und –prüfung (BAM) ist gemäß GGVSEB §8 (2) /2/ in Deutschland die zuständige Behörde für die Prüfung und Zulassung radioaktiver Stoffe in besonderer Form. KW - Zulassung KW - Radioaktiv KW - Beförderung KW - Strahlenschutz PY - 2020 SN - 0947-434 X IS - 1 SP - 14 EP - 16 PB - TÜV Media CY - Köln AN - OPUS4-50763 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Nasyrow, R. A1 - Papaioannou, D. A1 - Vlassopoulos, E. A1 - Rondinella, V. T1 - Analysis of parameters affecting the bending behavior of spent fuel rods N2 - Transport packages for spent nuclear fuel have to be assessed with respect to specific transport conditions which are defined in the regulations of the International Atomic Energy Agency. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important inputs for the evaluation of the package capabilities under these conditions. Cracks or failures in the fuel rod cladding can cause the release of gas, volatiles or fuel particles into the cavity. The amount of substances in the cavity has to be considered in the assessment of the activity release and criticality safety. The mechanical analysis of the compound system formed by the fuel rod cladding and the spent fuel pellets is very difficult due to the limited knowledge of the material properties and the insufficient understanding of the interaction between pellets and cladding and between adjacent pellets. The variation of fuel assembly properties regarding cladding material, burn-up and the history of usage makes reliable predictions of the fuel rod behavior even harder. For a better understanding about the behavior of spent fuel rods, JRC-ITU and BAM have started a joint research project. In this context, JRC-ITU has developed a test device which allows quasi-static 3-point-bending test on fuel rod segments in the hot cell. The loads are applied with respect to the boundary conditions of the activity release assessment. This paper deals with the numerical calculation of a single fuel rod segment under bending load. The aim is to identify the governing mechanical parameters by the variation of constitutive assumptions, contact conditions, inner constraints, etc. This knowledge helps for the interpretation of the experimental results. Furthermore, the improved understanding about the behavior of the cladding-pellets system will be beneficial for the assessment of spent fuel transport conditions. T2 - PATRAM 2016 - 18th International symposium on the packaging and transportation of radioactive materials CY - Kobe, Japan DA - 18.09.2016 KW - Transport packages KW - Finite element methods KW - Spent fuel assessment PY - 2016 SP - Paper 2012, 1 AN - OPUS4-40000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nasyrow, R. A1 - Papaioannou, D. A1 - Rondinella, V. A1 - Vlassopoulos, E. A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Caruso, St. T1 - Bending test device for mechanical integrity studies of spent nuclear fuel rods N2 - This paper presents data obtained from experiments performed using a bending test set-up developed at the Joint Research Centre (JRC) – Karlsruhe, for spent fuel segment testing. Adjustable sample holders, loading modes and other experimental conditions can be im- plemented in the experiments to study the effects of different deformation ranges up to cladding failure. The experimental set-up has been adapted to hot cell remote controlling and has a modular configuration, which allows manual and motor-driven loading option. The device has been calibrated on hydrogenated, unirradiated cladding tube segments filled with alumina pellets. The final application of present set-up is to test non-defueled spent fuel rod segments, pressurized to the original spent fuel rod pressure level. The range of applicability of this device, the scope of the experimental program and the first results from actual bending tests will be discussed. T2 - PATRAM 2016 - 18th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Kobe, Japan DA - 18.09.2016 KW - Hot cell testing KW - Spent fuel assessment KW - Transport packages PY - 2016 SP - Paper 6023, 1 AN - OPUS4-40002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette T1 - Assessment approaches of mechanical behavior of SNF under transport package test conditions N2 - German packages for the transport of spent nuclear fuel are assessed with respect to specific transport conditions which are defined in the safety regulations of the International Atomic Energy Agency. In general, gastight fuel rods constitute the first barrier of the containment system. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important inputs for the evaluation of the package safety under transport conditions. The objective of this paper is to discuss the methodologies accepted by German authority BAM for the evaluation of spent fuel behavior within the package design approval procedure. Specific test conditions will be analyzed with regard to assumptions to be used in the activity release and criticality safety analysis. In particular the different failure modes of the fuel rods, which can cause release of gas, volatiles, fuel particles or fragments, have to be properly considered in these assumptions. The package as a mechanical system is characterized by a complex set of interactions, e.g. between the fuel rods within the assembly as well as between the fuel assemblies, the basket, and the cask containment. This complexity together with the limited knowledge about the material properties and the variation of the fuel assemblies regarding cladding material, burn-up and the operation history makes an exact mechanical analysis of the fuel rods nearly impossible. The application of sophisticated numerical models requires extensive experimental data for model verification, which are in general not available. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally, and require a conservative approach. In this context some practical approaches based on experiences by BAM within safety assessment of packages for transport of spent fuel will be discussed. Ongoing research activities to investigate SNF mechanical behavior in view of gas and fissile material release under transport loads are presented. T2 - International High-Level Radioactive Waste Management Conference, IHLRWM 2017 CY - Charlotte, NC, USA DA - 09.04.2017 KW - Brennelementverhalten KW - Spent fuel behavior KW - Hüllrohr KW - Kritikalität KW - Aktivitätsfreisetzung KW - Mechanisches Verhalten KW - Cladding KW - Criticality PY - 2017 SP - 472 EP - 475 AN - OPUS4-39898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Droste, Bernhard T1 - Design Approval of Special Form Radioactive Material- Important Aspects N2 - The design of a special form radioactive material has to resist a severe transport accident without undue loss or dispersal of radioactive material. Safety assessment by authorities competent for design approval has to include besides the required test program (impact, percussion, bending and heat test) also the evaluation of the quality management system for design, manufacture, testing, documentation, use, maintenance and inspection. These quality assurance measures have to assure that every specimen of the approved design is produced in the same verified quality and every specimen must be able to survive the severe mechanical and thermal tests without undue loss or dispersal of radioactive material at any time of its working life. All important aspects in the design approval procedure by BAM as the competent authority for approvals of special form radioactive material in Germany are summarized in a guideline published in 2014. This paper will give additional explanations to some aspects in safety assessment, e.g.: the applicability of leak test methods and the need to consider ageing aspects. T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - Safety KW - Radioactive material KW - Transport PY - 2016 AN - OPUS4-39909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Droste, Bernhard T1 - Design Approval of Special Form Radioactive Material- Important Aspects N2 - The design of a special form radioactive material has to resist a severe transport accident without undue loss or dispersal of radioactive material. Safety assessment by authorities competent for design approval has to include besides the required test program (impact, percussion, bending and heat test) also the evaluation of the quality management system for design, manufacture, testing, documentation, use, maintenance and inspection. These quality assurance measures have to assure that every specimen of the approved design is produced in the same verified quality and every specimen must be able to survive the severe mechanical and thermal tests without undue loss or dispersal of radioactive material at any time of its working life. All important aspects in the design approval procedure by BAM as the competent authority for approvals of special form radioactive material in Germany are summarized in a guideline published in 2014. This paper will give additional explanations to some aspects in safety assessment, e.g.: the applicability of leak test methods and the need to consider ageing aspects. T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - Transport KW - Radioactive material KW - Safety PY - 2016 SP - Paper 4004-22 AN - OPUS4-39912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Wille, Frank T1 - Considerations on spent fuel behavior for transport after extended storage N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. In this paper, the mechanical behavior of high burn-up spent fuel assemblies (> approx. 50 GWd/tHM, value averaged over the fuel assembly) under transport conditions is analyzed with regard to the assumptions which are used in the Containment and criticality safety analysis. In view of the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. Additionally, the gaps in information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated. Considerations and knowledge gaps for the transport after extended interim storage are issues of growing interest. In this context, practical approaches are discussed based on the experience of BAM within the safety assessment of packages approved for transport of spent nuclear fuel. KW - Transport packages for radioactive material KW - Spent nuclear fuel PY - 2018 VL - 83 IS - 6 SP - 488 EP - 494 PB - Hanser AN - OPUS4-47359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The containment systems of transport casks for spent fuel and high radioactive waste usually include bolted lids with metallic or elastomeric seals. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of such containment system. Scaled cask models are often used for providing the required mechanical and thermal tests series. Leak tests have been conducted on those models. It is also common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions of the transferability of scaled test results to the full size design of the containment system will be discussed. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prag, Czech Republic DA - 15.08 2018 KW - Containment KW - Spent fuel KW - Leakage rate PY - 2018 VL - 7 SP - PVP2018-84089, 1 EP - 8 AN - OPUS4-46533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of the containment system of transport casks for spent fuel and high radioactive waste. The containment systems of such transport casks usually include bolted lids with metallic or elastomeric seals. Scaled cask models are often used for providing the required mechanical and thermal tests series. Leak tests have been conducted on those models. It is common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions and open points of the transferability of scaled test results to the fullscale design of the containment system will be discussed. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15. Mai 2018 KW - Transport packages KW - Radioactve KW - Seals KW - Leakage rate PY - 2018 AN - OPUS4-46734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank T1 - Ageing aspect in design approval of special form radioactive material N2 - In accordance with the IAEA transport regulations, the design of special form radioactive material (SFRM) shall resist a severe transport accident without undue loss or dispersal of radioactive material. The safety assessment for design approval includes besides the program for physical tests (impact, percussion, bending and heat test) also the evaluation of the management system for design, manufacture, testing, documentation, use, maintenance, and inspection. SFRM source design plus management system shall ensure, that every specimen of the approved design is able to survive the severe mechanical and thermal tests at any time of its SFRM-working life. Due to the long-term use of SFRM designs in most cases, the assessment of the source ageing behavior is an important aspect in the approval procedure. Different fields of application imply a wide range of environmental conditions, from clean room atmosphere to highly aggressive industrial conditions. Besides of radioactive content, corrosion is a main factor for possible SFRM design degradation. Although the IAEA Advisory Material SSG-26 already implies an indication of the need for considering ageing mechanisms, suitable amendments in the regulatory requirements of SSR-6 should be introduced to make the approval procedure more transparent and help to reduce rounds of questions by the authority. A supplementary requirement for considering of ageing mechanisms could be a helpful contribution to an international harmonization of the approval procedure. This paper will describe major influencing factors to be considered to assess the ageing behavior of a SFRM design and will identify the need for a regulatory specification of a SFRM-working life as basis for the assessment of the SFRM design regarding time-dependent weakening. A proposal for an explicit requirement for consideration of ageing mechanisms in safety assessment of SFRM, which should be considered in the ongoing SSR-6 revision cycle, will be explained. T2 - PATRAM22 Conference CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Radioaktive Stoffe KW - Beförderung KW - Zulassung KW - Strahlenschutz PY - 2023 AN - OPUS4-57781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank T1 - Ageing aspect in design approval of special form radioactive material N2 - In accordance with the IAEA transport regulations, the design of special form radioactive material (SFRM) shall resist a severe transport accident without undue loss or dispersal of radioactive material. The safety assessment for design approval includes besides the program for physical tests (impact, percussion, bending and heat test) also the evaluation of the management system for design, manufacture, testing, documentation, use, maintenance, and inspection. SFRM source design plus management system shall ensure, that every specimen of the approved design is able to survive the severe mechanical and thermal tests at any time of its SFRM-working life. Due to the long-term use of SFRM designs in most cases, the assessment of the source ageing behavior is an important aspect in the approval procedure. Different fields of application imply a wide range of environmental conditions, from clean room atmosphere to highly aggressive industrial conditions. Besides of radioactive content, corrosion is a main factor for possible SFRM design degradation. Although the IAEA Advisory Material SSG-26 already implies an indication of the need for considering ageing mechanisms, suitable amendments in the regulatory requirements of SSR-6 should be introduced to make the approval procedure more transparent and help to reduce rounds of questions by the authority. A supplementary requirement for considering of ageing mechanisms could be a helpful contribution to an international harmonization of the approval procedure. This paper will describe major influencing factors to be considered to assess the ageing behavior of a SFRM design and will identify the need for a regulatory specification of a SFRM-working life as basis for the assessment of the SFRM design regarding time-dependent weakening. A proposal for an explicit requirement for consideration of ageing mechanisms in safety assessment of SFRM, which should be considered in the ongoing SSR-6 revision cycle, will be explained. T2 - PATRAM22 Conference CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Ttransport KW - Radioactive material KW - Sealed sources KW - Ageing PY - 2023 SP - 1 EP - 6 AN - OPUS4-57786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Investigations of Aged Metal Seals for Transport Package Safety Assessment N2 - Acceptable limits for activity release from transport casks for high-level radioactive material specified in the IAEA regulations must be kept by the integrity of cask body and the cask sealing system. BAM as the German competent authority for mechanical, thermal and containment assessment of packages liable for approval verifies the activity release compliance with the regulatory limits. One of the fundamental aspects in assessment is the specification of conservative package design leakage rates. To ensure the required package tightness for both, storage, and transport of the cask before and after storage usually metal seals of the Helicoflex® Type are used. Due to the long-term use the seal behavior is influenced by temperature and time. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport specified in the regulations can have a significant effect on the leak tightness of the sealing system. Whereas the safety for application of new, non- aged Helicoflex® seals is verified sufficiently, there are still technical data gaps concerning the efficiency of aged Helicoflex® seals. BAM performed experiments to learn more about the sealing efficiency of aged Helicoflex® seals with Aluminum and Silver outer jackets. The seals were compressed in test-flanges and for artificial ageing the complete flange systems were stored in an oven for several month at a high temperature. During the compression and decompression tests after the aging, load-deformation characteristics of the seals, and leakage rates were measured. With these tests a load situation was simulated, which can occur in the regulatory drop test of the cask: Under high impact loads the bolted lid can lift a little for a short moment, allowing a little movement of the seal, so that the contact area can change before compressing again. The poster presentation will show details about test conditions and first results. T2 - Interdisciplinary research symposium on the safety of nuclear disposal practices safeND2023 CY - Berlin, Germany DA - 13.09.2023 KW - Radioactive material KW - Sealing KW - Ageing KW - Leaktightnes PY - 2023 AN - OPUS4-58436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -