TY - JOUR A1 - Kittler, Katrin A1 - Schreiner, M. A1 - Krumbein, A. A1 - Manzei, S. A1 - Koch, Matthias A1 - Rohn, S. A1 - Maul, Ronald T1 - Uptake of the cyanobacterial toxin cylindrospermopsin in brassica vegetables JF - Food chemistry N2 - Toxin-producing cyanobacterial species are increasingly being found in freshwater systems. However, literature on the impact of many cyanobacterial toxins on plants is scarce. Cylindrospermosin (CYN), a secondary metabolite of cyanobacteria such as Cylindrospermopsis and Aphanizomenon species, is a potent hepatotoxin and protein synthesis inhibitor. Worryingly, CYN is increasingly found in surface and drinking water worldwide causing human and animal intoxications. Further, exposure of crop plants to CYN by irrigation with contaminated water has already been shown. Therefore, in this study, horticulturally important and highly consumed Brassica species were investigated to determine the level of CYN in the leaves after exposure of the roots to the toxin. Treatment of Brassica oleracea var. sabellica, Brassica juncea, and Sinapis alba under varying experimental conditions showed significant CYN uptake, with CYN levels ranging from 10% to 21% in the leaves compared to the CYN concentration applied to the roots (18–35 µg/l). In seedlings, CYN concentrations of up to 49 µg/g fresh weight were observed. Thus, crop plants irrigated with CYN-containing water may represent a significant source of this toxin within the food chain. KW - Cylindrospermopsin KW - Plant systemic availability KW - Cyanobacterial toxin KW - Brassicaceae KW - Exposure source PY - 2012 DO - https://doi.org/10.1016/j.foodchem.2012.01.107 SN - 0308-8146 VL - 133 IS - 3 SP - 875 EP - 879 PB - Elsevier CY - Amsterdam [u.a.] ; Jena AN - OPUS4-25730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittler, Katrin A1 - Schreiner, M. A1 - Krumbein, A. A1 - Rohn, S. A1 - Koch, Matthias A1 - Maul, Ronald T1 - Resorption des Cyanotoxins Cylindrospermopsin durch Brassica-Arten T2 - Regionalverbandstagung Nordost T2 - Regionalverbandstagung Nordost CY - Berlin, Germany DA - 2013-03-14 PY - 2013 AN - OPUS4-27832 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittler, Katrin A1 - Schreiner, M. A1 - Krumbein, A. A1 - Rohn, S. A1 - Koch, Matthias A1 - Maul, Ronald T1 - Detection of the Cyanotoxin Cylindrospermopsin in Brassica Species T2 - JCF Frühjahrssymposium T2 - JCF Frühjahrssymposium CY - Berlin, Germany DA - 2013-03-06 PY - 2013 AN - OPUS4-27833 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kittler, Katrin A1 - Hoffmann, Holger A1 - Lindemann, Franziska A1 - Koch, Matthias A1 - Rohn, S. A1 - Maul, Ronald T1 - Biosynthesis of 15N-labeled cylindrospermopsin and its application as internal standard in stable isotope dilution analysis JF - Analytical and bioanalytical chemistry N2 - Cylindrospermopsin (CYN) is a cyanobacterial toxin associated with human and animal poisonings. Due to its toxicity in combination with its widespread occurrence, the development of reliable methods for selective, sensitive detection and accurate quantification is mandatory. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis using stable isotope dilution analysis (SIDA) represents an ideal tool for this purpose. U-[15N5]-CYN was synthesized by culturing Aphanizomenon flos-aquae in Na15NO3-containing cyanobacteria growth medium followed by a cleanup using graphitized carbon black columns and mass spectrometric characterization. Subsequently, a SIDA-LC-MS/MS method for the quantification of CYN in freshwater and Brassica matrices was developed showing satisfactory performance data. The recovery ranged between 98 and 103 %; the limit of quantification was 15 ng/L in freshwater and 50 µg/kg dry weight in Brassica samples. The novel SIDA was applied for CYN determination in real freshwater samples as well as in kale and in vegetable mustard exposed to toxin-containing irrigation water. Two of the freshwater samples taken from German lakes were found to be CYN-contaminated above limit of quantification (17.9 and 60.8 ng/L). CYN is systemically available to the examined vegetable species after exposure of the rootstock leading to CYN mass fractions in kale and vegetable mustard leaves of 15.0 µg/kg fresh weight and 23.9 µg/kg fresh weight, respectively. CYN measurements in both matrices are exemplary for the versatile applicability of the developed method in environmental analysis. KW - Cyanotoxin KW - Quantification KW - Surface water KW - Vegetable plants KW - SIDA KW - HPLC-MS/MS PY - 2014 DO - https://doi.org/10.1007/s00216-014-8026-y SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 24 SP - 5765 EP - 5774 PB - Springer CY - Berlin AN - OPUS4-31566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -