TY - JOUR A1 - Dorgerloh, Ute A1 - Becker, Roland A1 - Riedel, Juliane A1 - Hofmann, Andrea T1 - Comparison of gas- and liquid chromatography-mass spectrometry for trace analysis of anilines in groundwater JF - International Journal of Environmental Analytical Chemistry N2 - Three chromatographic procedures were investigated regarding their potential for the quantification of aniline and 19 of its methylated and chlorinated derivatives in groundwater. These methods were based on liquid-liquid-extraction in combination with gas chromatography and single quadrupole mass spectrometry (GC/MS) according to German standard DIN 38407-16:1999 and its extension using tandem mass spectrometry (GC/MS-MS), both following liquid-liquid extraction, and as third alternative the direct injection of the water sample into a liquid chromatograph coupled to tandem mass spectrometry (LC/MS-MS). Results were compared using fortified water and real-world contaminated groundwater used in an interlaboratory comparison. It could be shown that GC/MS and GC/MS-MS yielded results deviating less than 10% from each other while all three procedure displayed quantification results deviating less than 15% from the intercomparison reference values in case of each analyte in the concentration range between 1 and 45 µg L-1. Though GC/MS-MS displays a ten-fold higher sensitivity than single quadrupole GC/MS, the precision of both methods in the concentration range was similar. LC/MS-MS has the advantage of no further sample preparation due to the direct injection and leads for methylanilines and meta-, para- substituted chloroanilines to results sufficiently equivalent to the standardised GC/MS method. However, LC/MS-MS is not suitable for ortho-chloroaniline derivates due to significantly lower ion yields than meta- and para-substituted chloroanilines. KW - Interlaboratory comparison KW - Aniline KW - Chloroanilines KW - Methylanilines KW - Groundwater KW - GC/MS KW - GC/MS-MS KW - LC/MS-MS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535793 DO - https://doi.org/10.1080/03067319.2021.1987423 VL - 103 IS - 19 SP - 8465 EP - 8477 PB - Taylor & Francis CY - London AN - OPUS4-53579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koch, Matthias A1 - Mauch, Tatjana A1 - Riedel, Juliane T1 - Development of a Hydrazine-Based Solid-Phase Extraction and Clean-Up Method for Highly Selective Quantification of Zearalenone in Edible Vegetable Oils by HPLC-FLD JF - Toxins N2 - Rapid, cost-efficient, and eco-friendly methods are desired today for routine analysis of the Fusarium mycotoxin zearalenone (ZEN) in edible vegetable oils. Liquid chromatography with fluorescence detection (HPLC-FLD) is commonly used to reliably control the specified ZEN maximum levels, which requires efficient sample clean-up to avoid matrix interferences. Therefore, a highly selective extraction and clean-up method based on reversible covalent hydrazine chemistry (RCHC) using hydrazine-functionalized silica was developed. This efficient solid-phase extraction (SPE) involves reversible hydrazone formation of ZEN with the hydrazine moiety covalently bound to a solid phase. Optimal conditions were achieved with 1 mL SPE cartridges filled with 400 mg of hydrazine-functionalized silica. The developed RCHC-SPE method was validated in an interlaboratory comparison study (ILC) with twelve participants analyzing six edible vegetable oils with a focus on maize oils. The derived method parameters (ZEN recovery 83%, repeatability 7.0%, and reproducibility 18%) meet the performance criteria of Commission Regulation (EC) No 401/2006. The developed RCHC-SPE-based HPLC-FLD method allows the reliable quantification of ZEN in the range of 47–494 μg/kg for different types of edible vegetable oils, also for matrix-reach native oils. Due to the high efficiency, the significantly reduced matrix load helps to extend the lifetime of analytical equipment. Furthermore, the re-useability of the RCHC-SPE cartridges contributes to an eco-friendly approach and reduced analysis costs. To our knowledge, this is the first report on ZEN quantification in edible vegetable oils based on manual RCHC-SPE cartridges. Due to its high performance, the developed RCHC-SPE method is a promising alternative to the current European standard method EN 16924:2017 (HPLC-FLD part). KW - Mycotoxin KW - Food KW - Reversible covalent hydrazine chemistry (RCHC) KW - Quantitative determination PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554812 DO - https://doi.org/10.3390/toxins14080549 VL - 14 IS - 8 PB - MDPI CY - Basel AN - OPUS4-55481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, X.Q. A1 - Li, H.M. A1 - Jiao, H. A1 - Guo, Z.H. A1 - Zhang, Q.H. A1 - Kneeteman, L.E. A1 - Lewin, M. A1 - Pires do Rego, E.C. A1 - Leal, R.V. A1 - Violante, F.G.M. A1 - Riedel, Juliane A1 - Koch, Matthias T1 - CCQM Key Comparison track A CCQM-K168: Non-polar analytes in high carbohydrate food matrix: trans-zearalenone in maize powder JF - Metrologia N2 - Demonstrating competency and equivalence for the measurement capacity of contaminants and nutrients in primary foodstuffs is a priority of the OAWG 10-year strategy for Track A core comparisons. Such measurements have posed significant challenges for reference material producers and calibration service providers. This key comparison (KC), under the topic of “non- polar analyte in high carbohydrate food matrix: trans-Zearalenone (trans-ZEN) in maize powder” , was a sector of the model system selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to demonstrate the Calibration and Measurement Capabilities (CMCs) of national metrology institutes (NMIs) and designated institutes (DIs). 17 NMIs and DIs participated in the Track A KC CCQM- 168 “non-polar analyte in high carbohydrate food matrix: trans-ZEN in maize powder” . Participants were requested to evaluate the mass fraction (μg/kg) of trans-ZEN in maize powder material. Methods like liquid-liquid extraction and SPE were applied in the pre-treatment, and HPLC-MS/MS and HPLC-FLD were used for detection by the participants. The mass fractions for trans-ZEN were in the range of (91.8 to 169) μg/kg with standard uncertainties of (1.5 to 24.7) μg/kg, and corresponding relative standard uncertainties from 1.5% to 14.6%. Two labs, INTI and BAM were excluded from the KCRV evaluation. INTI result was identified as an outlier and confirmed their method had insufficient specificity. For BAM the calibration approach they used does not meet the CIPM traceability requirements. The other 15 labs included in the calculation of the consensus KCRV all agreed within their standard uncertainties. Hierarchical Bayes was used as estimators in calculating KCRV and standard uncertainty. Successful participation in CCQM-K168 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 1 μg/kg to 1000 μg/kg in a high carbohydrate food matrix. KW - Metrology KW - Quality Assurance KW - Mycotoxin Analysis KW - Sustainable Food Safety PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08021 VL - 60 IS - 1a SP - 08021 AN - OPUS4-59059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Juliane A1 - Recknagel, Sebastian A1 - Sassenroth, Diana A1 - Mauch, Tatjana A1 - Buttler, Sabine A1 - Sommerfeld, Thomas A1 - Penk, Sibylle A1 - Koch, Matthias T1 - Development and certification of a reference material for zearalenone in maize germ oil JF - Analytical and bioanalytical chemistry N2 - Zearalenone (ZEN), an estrogenic mycotoxin produced by several species of Fusarium fungi, is a common contaminant of cereal-based food worldwide. Due to frequent occurrences associated with high levels of ZEN, maize oil is a particular source of exposure. Although a European maximumlevel for ZEN in maize oil exists according to Commission Regulation (EC) No. 1126/2007 along with a newly developed international standard method for analysis, certified reference materials (CRM) are still not available. To overcome this lack, the first CRM for the determination of ZEN in contaminated maize germ oil (ERM®-BC715) was developed in the frame of a European Reference Materials (ERM®) project according to the requirements of ISO Guide 35. The whole process of CRM development including preparation, homogeneity and stability studies, and value assignment is presented. The assignment of the certified mass fraction was based upon an in-house study using high-performance liquid chromatography isotope dilution tandem mass spectrometry. Simultaneously, to support the in-house certification study, an interlaboratory comparison study was conducted with 13 expert laboratories using different analytical methods. The certified mass fraction and expanded uncertainty (k=2) of ERM®-BC715 (362± 22) μg kg−1 ZEN are traceable to the SI. This reference material is intended for analytical quality control and contributes to the improvement of consumer protection and food safety. KW - Fusarium mycotoxin KW - Vegetable edible oil KW - Food analysis KW - European Reference Material KW - Quality assurance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531831 DO - https://doi.org/10.1007/s00216-021-03532-z SN - 1618-2642 SN - 1618-2650 VL - 413 IS - 21 SP - 5483 EP - 5491 PB - Springer CY - Berlin AN - OPUS4-53183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommerfeld, Thomas A1 - Jung, Christian A1 - Riedel, Juliane A1 - Mauch, Tatjana A1 - Sauer, Andreas A1 - Koch, Matthias T1 - Development of a certified reference material for the determination of polycyclic aromatic hydrocarbons (PAHs) in rubber toy JF - Analytical and Bioanalytical Chemistry N2 - Polycyclic aromatic hydrocarbons (PAHs) are a large group of priority organic pollutants, which contaminate environmental compartments, food, and consumer products as well. Due to their frequent occurrence associated with elevated Levels of PAHs, plastic and rubber parts of consumer products and toys are particular sources of exposure. Although European maximum levels exist for eight carcinogenic PAHs in consumer products and toys according to REACH Regulation (EC) No. 1907/2006, certified reference materials (CRM) are still not available. To overcome this lack, the first CRM for the determination of PAHs in rubber toys (BAM-B001) was developed according to the requirements of ISO Guide 35. The whole process of CRM development including preparation, homogeneity and stability studies, and value assignment is presented. The assignment of the certified mass fractions was based upon in-house study at BAM using stable isotope Dilution analysis (SIDA) gas chromatography mass spectrometry (GC–MS). The obtained values were confirmed by the results of two interlaboratory comparison (ILC) studies with more than 50 expert laboratories from Germany and China. The mass fractions of 14 PAHs including all REACH and GS mark regulated compounds were certified ranging between 0.2 and 15.4 mg/ kg accompanied by expanded uncertainties (coverage factor k = 2). In addition, informative values were determined for 4 PAHs, mainly due to higher uncertainties and/or lack of ILC data for confirmation. BAM-B001 is intended for analytical quality control particularly based on the AfPS GS 2019:01 PAK method and contributes to improve the chemical safety of consumer products including toys. KW - PAHs KW - Consumer Products KW - Toys KW - Chemical Safety KW - Certified reference material KW - Quality assurance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539920 DO - https://doi.org/10.1007/s00216-021-03796-5 VL - 414 IS - 15 SP - 4369 EP - 4378 PB - Springer AN - OPUS4-53992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Sommerfeld, Thomas A1 - Koch, Matthias A1 - Mauch, Tatjana A1 - Jung, Christian A1 - Riedel, Juliane A1 - Lisec, Jan T1 - CRM BAM-A001 eCerto data file N2 - Data file (RData) containing measurement data recorded during the production process of the Certified Reference Material BAM-A001 containing Polycyclic Aromatic Hydrocarbons (PAH) in olive oil. The data can be most conveniently openend using the Shiny-App eCerto which is accessible at https://www.bam.de/eCerto. KW - Certified reference material KW - Mass spectrometry KW - Olive oil KW - Aromatic hydrocarbons KW - Reference data PY - 2023 UR - https://doi.org/10.5281/zenodo.8380870 DO - https://doi.org/10.5281/zenodo.8380869 PB - Zenodo CY - Geneva AN - OPUS4-58488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material JF - Metrologia N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -