TY - JOUR A1 - Ickert, Stefanie A1 - Hofmann, J. A1 - Riedel, Jens A1 - Beck, S. A1 - Pagel, K. A1 - Linscheid, M. W. T1 - Charge-induced geometrical reorganization of DNA oligonucleotides studied by tandem mass spectrometry and ion mobility N2 - Mass spectrometry is applied as a tool for the elucidation of molecular structures. This premises that gas-phase structures reflect the original geometry of the analytes, while it requires a thorough understanding and investigation of the forces controlling and affecting the gas-phase structures. However, only little is known about conformational changes of oligonucleotides in the gas phase. In this study, a series of multiply charged DNA oligonucleotides (n¼15–40) has been subjected to a comprehensive tandem mass spectrometric study to unravel transitions between different ionic gas-phase structures. The nucleobase sequence and the chain length were varied to gain insights into their influence on the geometrical oligonucleotide organization. Altogether, 23 oligonucleotides were analyzed using collision-induced fragmentation. All sequences showed comparable correlation regarding the characteristic collision energy. This value that is also a measure for stability, strongly correlates with the net charge density of the precursor ions. With decreasing charge of the oligonucleotides, an increase in the fragmentation energy was observed. At a distinct charge density, a deviation from linearity was observed for all studied species, indicating a structural reorganization. To corroborate the proposed geometrical change, collisional cross-sections of the oligonucleotides at different charge states were determined using ion mobility-mass spectrometry. The results clearly indicate that an increase in charge density and thus Coulomb repulsion results in the transition from a folded, compact form to elongated structures of the precursor ions. Our data show this structural transition to depend mainly on the charge density, whereas sequence and size do not have an influence. KW - Ion mobility KW - Collision-induced dissociation KW - Mass spectrometry KW - Oligonucleotide KW - Fragmentation KW - Tandem-MS PY - 2018 U6 - https://doi.org/10.1177/1469066717746896 SN - 1469-0667 SN - 1751-6838 VL - 24 IS - 2 SP - 225 EP - 230 PB - Sage AN - OPUS4-44429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Riedel, Jens A1 - Beck, S. A1 - Linscheid, M. W. T1 - Negative nucleotide ions as sensitive probes for energy specificity in collision‐induced fragmentation in mass spectrometry N2 - Rationale: The most commonly used fragmentation methods in tandem mass spectrometry (MS/MS) are collision‐induced dissociation (CID) and higher energy collisional dissociation (HCD). While in CID the preselected ions in the trap are resonantly (and m/z exclusively) excited, in HCD the entire m/z range experiences the dissociative acceleration. The different excitation is reflected in different fragment distributions. Methods: As a test‐bed for particularly pronounced fragmentation specificity, here MS/MS experiments on several 4‐mer oligonucleotides were conducted employing both collision methods and the results were thoroughly compared. Oligonucleotides are shown to be sensitive probes to subtle changes, especially in the negative ion mode. A detailed analysis of these differences reveals insight into the dissociation mechanics. Results: Thedifferencesarerepresentedinheat‐maps,whichallowforadirectvisualinspection oflargeamountsofdata.Inthesefalsecolourrepresentationsthe,sometimessubtle,changesinthe individual dissociation product distributions become distinct. Another advantage of these graphic plots can be found in the formation of systematic patterns. These patterns reflect trends in dissociation specificity which allow for the formulation of general rules in fragmentation behavior. Conclusions: Instruments equipped with two different excitation schemes for MS/MS are today widely available. Nonetheless, direct comparisons between the individual results are scarcely made. Such comparative studies bear a powerful analytical potential to elucidate fragmentation reaction mechanism. KW - DNA KW - Tandem MS KW - HCD KW - CID PY - 2018 U6 - https://doi.org/10.1002/rcm.8062 SN - 0951-4198 SN - 1097-0231 VL - 32 IS - 7 SP - 597 EP - 603 PB - Wiley & Sons, Ltd. AN - OPUS4-44430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalik-Onichimowska, Aleksandra A1 - Beitz, T. A1 - Panne, Ulrich A1 - Löhmannsröben, H.-G. A1 - Riedel, Jens T1 - Laser ionization ion mobility spectrometric interrogation of acoustically levitated droplets N2 - Acoustically levitated droplets have been suggested as compartmentalized, yet wall-less microreactors for high-throughput reaction optimization purposes. The absence of walls is envisioned to simplify up-scaling of the optimized reaction conditions found in the microliter volumes. A consequent pursuance of high-throughput chemistry calls for a fast, robust and sensitive analysis suited for online interrogation. For reaction optimization, targeted Analysis with relatively low sensitivity suffices, while a fast, robust and automated sampling is paramount. To follow this approach, in this contribution, a direct coupling of levitated droplets to a homebuilt ion mobility spectrometer (IMS) is presented. The sampling, Transfer to the gas phase, as well as the ionization are all performed by a single exposure of the sampling volume to the resonant output of a mid-IR laser. Once formed, the nascent spatially and temporally evolving analyte ion cloud needs to be guided out of the acoustically confined trap into the inlet of the ion mobility spectrometer. Since the IMS is operated at ambient pressure, no fluid dynamic along a pressure Gradient can be employed. Instead, the transfer is achieved by the electrostatic potential gradient inside a dual ring electrode ion optics, guiding the analyte ion cloud into the first stage of the IMS linear drift tube accelerator. The design of the appropriate atmospheric pressure ion optics is based on the original vacuum ion optics design of Wiley and McLaren. The obtained experimental results nicely coincide with ion trajectory calculations based on a collisional model. KW - Ambient pressure laser ionization KW - Ionmobility spectrometry KW - Acoustic levitation KW - ion optics PY - 2019 U6 - https://doi.org/10.1007/s00216-019-02167-5 VL - 411 IS - 30 SP - 8053 EP - 8061 PB - Springer CY - Heidelberg AN - OPUS4-50132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Beck, S. A1 - Linscheid, M. A1 - Riedel, Jens T1 - VUV Photodissociation Induced by a Deuterium Lamp in an Ion Trap N2 - Tandem mass spectrometry represents an important analytical tool to unravel molecular structures and to study the gas-phase behavior of organic molecules. Besides commonly used methods like collision-induced dissociation and electron capture or transfer dissociation, new ultraviolet light–based techniques have the potential to synergistically add to the activation methods. Here, we present a new simple, yet robust, experimental design for polychromatic activation of trapped ions using the 115–160 nm output of a commercially available deuterium lamp. The resulting continuous dissociative excitation with photons of a wide energy range from 7.7 to 10.8 eV is studied for a comprehensive set of analyte classes in both positive and negative ion modes. While being simple, affordable, compact, and of low maintenance, the new setup initiates fragmentation of most precursor ions via their known dissociation pathways. Additionally, some new fragmentation patterns were discovered. Especially, electron loss and electron capture reactions with subsequent fragmentations were observed. For oligonucleotides, peptides, carbohydrates, and organic dyes, in comparison to collision-induced dissociation, a significantly wider fragment distribution was obtained, resulting in an information increase. Since the individual photons carry enough energy to post-ionize the nascent fragments, a permanent vacuum ultraviolet light exposure inside the ion trap potentially goes along with a general increase in detection capability. KW - Fragmentation activation KW - Vacuum ultraviolet (VUV) light KW - Mass spectrometry KW - Tandem MS PY - 2019 U6 - https://doi.org/10.1007/s13361-019-02282-8 SN - 1044-0305 VL - 30 IS - 10 SP - 2114 EP - 2122 PB - Springer Nature CY - Heidelberg AN - OPUS4-48756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - You, Yi A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Spatial, temporal, and spectral characterization and kinetic investigations of a high repetition-rate laser-induced micro-plasma in air N2 - Advances in laser-induced plasmas have enabled various rapid and simple analytical applications. Especially, their uses in the analyses of condensed-phase samples have drawn significant attention in the past few decades. Depending on the laser energy per pulse, various analytical goals can be achieved. Laser-induced airborne plasmas allow direct analysis of species in ambient air. Importantly, all of these applications are based on a fundamental understanding of the laser–medium interaction. Recent developments of diode-pumped solid-state lasers offer an alternative to conventional powerful, yet bulky lasers, which can specifically operate at high Repetition rates. Although these lasers deliver much lower power per pulse (mJ compared to mJ), the outstanding repetition rates offer significant improvement to meet statistical needs in some cases. In the present work, a mJ-laserinduced airborne plasma was characterized through optical emission analysis. By using a ns-timegated image detector coupled with specific bandpass filters, spatially, temporally, and spectrally resolved plasma images were recorded. Compared to conventional mJ-laser-induced plasmas, the one induced by mJ-lasers demonstrated unique features during its evolution. Specifically, measurements of the distribution of ionic and atomic species revealed distinctive energy/matter transfer processes during early ignition of the plasma. Meanwhile, dynamic investigations suggested subsequent matter transport in the later stage. KW - Laser-induced plasma KW - Plasma KW - DPSS-laser PY - 2019 UR - https://pubs.rsc.org/en/content/articlehtml/2019/ja/c9ja00163h U6 - https://doi.org/10.1039/C9JA00163H SN - 0267-9477 VL - 34 IS - 8 SP - 1618 EP - 1629 PB - Royal Society of Chemistry CY - London AN - OPUS4-48622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Warschat, Carsten A1 - You, Yi A1 - Rurack, Knut A1 - Riedel, Jens T1 - Stimulated Raman scattering by intracavity mixing of nanosecond laser excitation and fluorescence in acoustically levitated droplets N2 - Raman spectroscopy is becoming a commonly used, powerful tool for structural elucidation and species identification of small liquid samples, e.g. in droplet-based digital microfluidic devices. Due to the low scattering cross sections and the temporal restrictions dictated by the droplet flow, however, it depends on amplification strategies which often come at a cost. In the case of surface-enhanced Raman scattering (SERS), this can be an enhanced susceptibility towards memory effects and cross talk, whereas resonant and/or stimulated Raman techniques require higher instrumental sophistication, such as tunable lasers or the high electromagnetic field strengths which are typically provided by femtosecond lasers. Here, an alternative instrumental approach is discussed, in which stimulated Raman scattering (SRS) is achieved using the single fixed wavelength output of an inexpensive diode-pumped solid-state (DPSS) nanosecond laser. The required field strengths are realized by an effective light trapping in a resonator mode inside the interrogated droplets, while the resonant light required for the stimulation is provided by the fluorescence signal of an admixed laser dye. To elucidate the underlying optical processes, proof-of-concept experiments are conducted on acoustically levitated droplets, mimicking a highly reproducible and stable digital fluidic system. By using isotope-labeled compounds, the assignment of the emitted radiation as Raman scattering is firmly corroborated. A direct comparison reveals an amplification of the usually weak spontaneous Stokes emission by up to five orders of magnitude. Further investigation of the optical power dependence reveals the resulting gain to depend on the intensity of both, the input laser fluence and the concentration of the admixed fluorophore, leaving SRS as the only feasible amplification mechanism. While in this study stable large droplets have been studied, the underlying principles also hold true for smaller droplets, in which case significantly lower laser pulse energy is required. Since DPSS lasers are readily available with high repetition rates, the presented detection strategy bears a huge potential for fast online identification and characterization routines in digital microfluidic devices. KW - Ultrasonic levitation KW - Stimulated Raman Spectroscopy PY - 2020 U6 - https://doi.org/10.1039/D0AY01504K VL - 12 IS - 42 SP - 5046 EP - 5054 PB - Royal Society of Chemistry AN - OPUS4-51566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Confinement and enhancement of an airborne atmospheric laser-induced plasma using an ultrasonic acoustic resonator N2 - Optical elemental analysis in the gas phase typically relies on electrically driven plasmas. As an alternative approach, laser-induced plasmas (LIPs) have been suggested but have so far been only scarcely used. Here, a novel signal enhancement strategy for laser-based airborne plasma optical Emission spectroscopy for gas phase analytics is presented. In contrast to an electrically driven plasma, in the laser-induced analogue dynamic matter transport equilibrium builds up. The latter results in a rarefied density regime in the plasma core itself, surrounded by an area of compressed matter. The central rarefaction leads to a decrease in plasma intensity and analyte number density, both of which are detrimental for analytical purposes. Since the repetitive ignition of LIPs is a transient process, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favourable. The presented combination of an airborne LIP and an ultrasonic acoustic resonator yields a fourfold signal enhancement while the Background contribution of ubiquitous air is at the same time effectively suppressed. Since the entire enhancement effect occurs without contact, no additional sources for abrasive sample contamination are introduced. KW - DPSS laser KW - Laser-induced plasma KW - High repetition rate KW - Ultrasonic acoustic resonator KW - Optical emission spectroscopy PY - 2018 U6 - https://doi.org/10.1039/C7JA00297A SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 1 SP - 135 EP - 140 PB - Royal Society of Chemistry CY - London AN - OPUS4-43619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Jens A1 - You, Yi A1 - Bierstedt, Andreas A1 - van Wasen, Sebastian A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. T1 - Airborne Laser-Induced Plasma as an Ambient Desorption/Ionization Source for Mass Spectrometry and its Characterization N2 - Laser-induced plasma (LIP) has drawn significant amount of attentions in the past decades, particular in elemental analyses for solid or liquid samples. Through proper focusing of the highly energetic laser beam, the plasma can also be ignited in the ambient air, where airborne analytes can be ionized. Such an effect enabled the use of airborne LIP as an ambient ionization source for mass spectrometric analyses. In contrast to other ambient desorption/ionization sources, airborne LIP does not require a specific discharge medium or expensive gas stream. Meanwhile, the airborne LIP produces reagent ion species for both proton-transfer and charge-transfer reactions in addition to the vacuum ultraviolent photons that are capable of promoting single photon ionization, which can be utilized to ionize polar and non-polar analytes. In order to gauge the analytical performance of airborne LIP, it is critical to understand the undergoing chemistry and physics during and after the plasma formation. Due to the ambient nature of airborne LIP, the variations of air composition and flow strongly affect the plasma behaviors. Preliminary result suggested the addition of a laminar flow of nitrogen gas favored the formation of protonated species (MH+) against the molecular ones (M+). Although the gas addition approach cannot fully tune the ionization process towards the specific production of pseudo-molecular species versus molecular ones, the alternation of molecular ion formation can be used for analyte recognitions through post processing of the ion patterns. The pulsed character of the used lasers makes the reagent ion equilibrium both transient- and highly fluid-dynamically controlled. The acoustic shock-waves induced by the airborne LIP get affected by an applied gas streams towards the plasma center, influencing the molecular-ion and ion-ion interactions in the near proximity of the plasma. To understand the airborne LIP formation, the temporally and spatially resolved optical emission spectra were recorded. The results will be correlated to time-resolved mass-spectrometric investigations of the ion profile during different stages of the plasma formation. As one example, the formation of pyrylium ion originating from aromatic compounds will be highlighted. T2 - SciX 2018 CY - Atlanta, GA, USA DA - 21.10.2018 KW - Laser-Induced Plasma KW - Ambient Desorption/Ionization KW - Mass Spectrometry KW - Characterization PY - 2018 AN - OPUS4-46376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - You, Yi A1 - van Wasen, Sebastian A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. A1 - Riedel, Jens T1 - Laser-Induced Microplasma as an Ambient Ionization Approach for the Mass-Spectrometric Analysis of Liquid Samples N2 - An airborne high repetition rate laser-induced plasma was applied as a versatile ambient ionization source for mass-spectrometric determinations of polar and nonpolar analytes in solution. The laser plasma was sustained between a home-built pneumatic nebulizer and the inlet capillary of an Orbitrap mass spectrometer. To maintain stable conditions in the droplet-rich spray environment, the plasma was directly fed by the fundamental output (λ = 1064 nm) of a current state-of-the-art diode-pumped solid-state laser. Ionization by the laser-driven plasma resulted in signals of intact analyte ions of several chemical categories. The analyte ions were found to be fully desolvated since no further increase in ion signal was observed upon heating of the inlet capillary. Due to the electroneutrality of the plasma, both positive and negative analyte ions could be formed simultaneously without altering the operational parameters of the ion source. While, typically, polar analytes with pronounced gas phase basicities worked best, nonpolar and amphoteric compounds were also detected. The latter were detected with lower ion signals and were prone to a certain degree of fragmentation induced during the ionization process. All the described attests the laser-induced microplasma by a good performance in terms of stability, robustness, sensitivity, and general applicability as a self-contained ion source for the liquid sample introduction. KW - Laser KW - Laser-induced plasma KW - Ambient ionization KW - Mass Spectrometry PY - 2019 U6 - https://doi.org/10.1021/acs.analchem.9b00329 SN - 0003-2700 VL - 91 IS - 9 SP - 5922 EP - 5928 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-47939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -