TY - JOUR A1 - Nohr, Michael A1 - Horn, Wolfgang A1 - Wiegner, Katharina A1 - Richter, Matthias A1 - Lorenz, W. T1 - Development of a material with reproducible emission of selected volatile organic compounds - mu-chamber study N2 - Volatile organic compounds (VOCs) found indoors have the potential to affect human health. Typical sources include building materials, furnishings, cleaning agents, etc. To address this risk, chemical emission testing is used to assess the potential of different materials to pollute indoor air. One objective of the European Joint Research Project 'MACPoll' (Metrology for Chemical Pollutants in Air) aims at developing and testing a reference material for the quality control of the emission testing procedure. Furthermore, it would enable comparison of measurement results between test laboratories. The heterogeneity of the majority of materials makes it difficult to find a suitable reference sample. In the present study, styrene, 2-ethyl-1-hexanol, N-methyl-α-pyrrolidone, lindane, n-hexadecane, 1,2-dimethyl- and 1,2-di-n-butyl-phthalate were added to 12 commercially available lacquers (6 alkyd and 6 acrylic polymer based lacquers) serving as carrier substrate. After homogenization, the mixtures were loaded into a Markes Micro-Chamber/Thermal Extractor (µ-CTE™) for curing and investigation of the emission behavior for each compound. For almost all of the investigated chemicals, the preferred glossy acrylic lacquer showed emissions that were reproducible with a variation of less than 20% RSD. Such lacquer systems have therefore been shown to be good candidates for use as reference materials in inter-laboratory studies. KW - VOC KW - Reference material KW - Emission testing KW - Indoor air KW - Inter-laboratory study PY - 2014 DO - https://doi.org/10.1016/j.chemosphere.2013.12.047 SN - 0045-6535 SN - 0366-7111 VL - 107 SP - 224 EP - 229 PB - Elsevier Science CY - Kidlington, Oxford AN - OPUS4-30816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias T1 - Quality control of indoor air monitoring - traceablility for the measurement of (S)VOCs T2 - MACPoll - Final conference CY - Delft, Netherlands DA - 2014-05-13 PY - 2014 AN - OPUS4-30705 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Jann, Oliver A1 - Juritsch, Elevtheria A1 - Klinge, A. A1 - Roswag, E. A1 - Fontana, Patrick A1 - Miccoli, Lorenzo T1 - Indoor air emission tests of natural materials N2 - Emissions of building materials might have negative impact on human health and well-being. In the EU-funded research project H-House more than 30 natural materials (earthen dry boards and plasters, bio-based insulation materials made of wood, flax, reed, straw, etc.) used for renovation and refurbishment were tested regarding emissions of VOC, formaldehyde and radon. Different to ordinary emission tests on single materials this study focuses on the emissions from complete wall assemblies. Therefore, specially designed test chambers were used allowing the compounds to release only from the surface of the material facing indoors. The testing parameters were chosen in order to simulate model room conditions. The emission results were finally evaluated using the AgBB evaluation scheme, a procedure currently applied for the approval of flooring materials in Germany. T2 - 1st ICBBM - International conference on bio-based building materials CY - Clermont-Ferrand, France DA - 22.06.2015 KW - Emission testing KW - Natural materials KW - VOC KW - Formaldehyde KW - Radon PY - 2015 SN - 978-2-35158-154-4 SP - 641 EP - 643 AN - OPUS4-33609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hofmann, Michael A1 - Richter, Matthias A1 - Jann, Oliver T1 - Determination of radon exhalation from building materials in dynamically operated test chambers by use of commercially available measuring devices N2 - The inhalation of radon (222Rn) decay products is the leading cause of lung cancer apart from tobacco smoking. Besides the permeation of radon from the subsoil through the basement as main source of radon in indoor air, also building materials have to be taken into consideration, especially at low air change rates in buildings. The Construction Products Regulation (EC, 2010) gives essential requirements for construction works regarding the release of dangerous substances such as toxic gases and radiation to which radon can be assigned. The recently adopted Basic Safety Standards Directive (EC, 2013), which has to be ratified by each European member state in between the next three years sets reference levels for indoor radon concentrations for the first time. In research project financed by the German Ministry for the Environment, Nature Conservation, Building and Nuclear Safety a practical, reliable and easily applicable test procedure for the determination of radon exhalation from building materials – based on ISO 16000-9 (ISO, 2006) and CEN/TS 16516 (CEN, 2013) – should be developed. In contrast to the static test procedure published by Richter et al. (2013), dynamically operated test chambers shall be foregrounded. First results of this study are presented, focused on the reliable measurement of radon background concentration and the selection of suitable radon test devices, representing the basic elements of the subsequent work. T2 - Healthy Buildings Europe 2015 CY - Eindhoven, The Netherlands DA - 18.05.2015 KW - Radon exhalation KW - Building material KW - VOC emission test chamber KW - Radon measurement PY - 2015 SN - 978-90-386-3889-8 SP - Paper 552, 1 EP - 3 AN - OPUS4-35011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias T1 - Indoor Air Emission Tests of Natural Materials T2 - 1st International Conference on Bio-based Buildings Materials CY - Clermont-Ferrand, France DA - 2015-06-22 PY - 2015 AN - OPUS4-33719 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hofmann, Michael A1 - Richter, Matthias A1 - Jann, Oliver T1 - Use of commercial radon monitors for low level radon measurements in dynamically operated VOC emission test chambers N2 - Compared to the intended EU reference level of 300 Bq m−3 for indoor radon concentrations, the contribution of building materials appears to be low. Considering the recommended limit of 100 Bq m−3 by WHO, their contribution is supposed to be relevant, especially at low air exchange rates. This study as part of a two-part research project investigated the suitability of direct low level 222Rn measurement under simulated indoor conditions with commercial radon monitors and dynamically operated emission test chambers. Active measuring devices based on ionisation or scintillation chambers with 1-σ uncertainties below 8.6% at 20 Bq m−3 were found to be best suitable for a practical test procedure for the determination of radon exhalation rates of building materials. For the measurement of such low concentrations, the knowledge of the accurate device background level is essential. KW - Radon monitors KW - Radon exhalation KW - Building materials KW - Measurement method PY - 2017 DO - https://doi.org/10.1093/rpd/ncx137 SN - 1742-3406 SN - 0144-8420 VL - 177 IS - 1-2 SP - 16 EP - 20 PB - Oxford Academic AN - OPUS4-41952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias T1 - Two new promising approaches for quality assurance measures for materials emissions testing N2 - Two new approaches towards an emission reference material for use in quality assurance measures for materials emissions testing were developed and intensively tested. The overall goal was to obtain solid materials with homogenous and reproducible (S)VOC release. Since the application in inter-laboratory comparisons is aimed at, it should furthermore be long-term stable to ensure safe shipment to the customer without sustaining compound losses. In the first approach, thermoplastic polyurethane (TPU) was impregnated with the VOC texanol under high-pressure with liquid CO2 as solvent. In the second, styrene (VOC) and the SVOC 2,6-diisopropylnaphthalene (DIPN) were spiked into vacuum grease (VG) and a mixture of paraf-fin/squalane (P/S). For the prediction of the emission rates a finite element model (FEM) was developed for the VG and P/S type materials. All requirements for reference materials were fulfilled, whereas the TPU samples need to be aged for about 10 days until repeatable and reproducible emission rates were obtained. T2 - Indoor Air 2018 CY - Philadelphia, PA, USA DA - 22.07.2018 KW - Emission reference material KW - Volatile organic compounds KW - CO2 assisted impregnation KW - FEM model PY - 2018 AN - OPUS4-45611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Mölders, N. A1 - Sauerwald, T. A1 - Schultealbert, C. A1 - Mull, B. T1 - Two new promising approaches for quality assurance measures for materials emissions testing N2 - Two new approaches towards an emission reference material for use in quality assurance measures for materials emissions testing were developed and intensively tested. The overall goal was to obtain solid materials with homogenous and reproducible (S)VOC release. Since the application in inter-laboratory comparisons is aimed at, it should furthermore be long-term stable to ensure safe shipment to the customer without sustaining compound losses. In the first approach, thermoplastic polyurethane (TPU) was impregnated with the VOC texanol under high-pressure with liquid CO2 as solvent. In the second, styrene (VOC) and the SVOC 2,6-diisopropylnaphthalene (DIPN) were spiked into vacuum grease (VG) and a mixture of paraf-fin/squalane (P/S). For the prediction of the emission rates a finite element model (FEM) was developed for the VG and P/S type materials. All requirements for reference materials were fulfilled, whereas the TPU samples need to be aged for about 10 days until repeatable and re-producible emission rates were obtained. T2 - Indoor Air 2018 CY - Philadelphia, PA, USA DA - 22.07.2018 KW - Emission reference material KW - Volatile organic compounds KW - CO2 assisted impregnation KW - FEM model PY - 2018 SP - 1 EP - 8 AN - OPUS4-45610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias T1 - Bestimmung von Produktemissionen in die Luft N2 - Der Vortrag stellt die Arbeit der BAM und des Fachbereichs 4.2 Materialien und Luftschadstoffe vor und erläutert die Vorgehensweise bei der Erfassung von Materialemissionen in die Luft. Es wird auf die Problematik der diskontinuierlichen Probenahme hingewiesen und die Vorzüge kontinuierlicher online-Messverfahren für solche Messungen erörtert. T2 - SIFT-MS: A Revolution in Rapid Trace Gas and Headspace Analysis CY - Berlin, Germany DA - 14.11.2017 KW - Emission aus Materialien KW - VOC KW - Baumaterialien PY - 2017 AN - OPUS4-43182 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Matthias A1 - Juritsch, Elevtheria A1 - Jann, Oliver T1 - Determination of recovery rates of adsorbents for sampling very volatile organic compounds (C1-C6) in dry and humid air in the sub-ppb range by use of thermal desorption gas chromatography-mass spectrometry N2 - The reliable measurement of very volatile organic compounds (VVOC) in indoor air by use of thermal desorption gas chromatography (TD-GC) in order to include them into evaluation schemes for building products even nowadays is a great challenge. For capturing these small molecules with carbon numbers ranging from C 1 –C 6 , strong adsorbents are needed. In the present study, recovery rates of nine suitable adsorbents of the groups of porous polymers, graphitised carbon blacks (GCB) and carbon molecular sieves (CMS) are tested against a complex test gas standard containing 29 VVOC. By consideration of the recovery and the relative humidity (50% RH), combinations of the GCB Carbograph 5TD, the two CMS Carboxen 1003 and Carbosieve SII as well as the porous polymer Tenax® GR were identified to be potentially suitable for sampling the majority of the VVOC out of the gas mix. The results reveal a better performance of the adsorbents in combination than being used alone, particularly under humid sampling conditions. The recovery rates of the chosen compounds on each adsorbent should be in the range of 80–120%. KW - VVOC KW - Indoor Air: Adsorbent performance KW - Recovery rate KW - Thermal desorption KW - Gas chromatography PY - 2020 DO - https://doi.org/10.1016/j.chroma.2020.461389 VL - 1626 SP - 1 EP - 9 PB - Elsevier AN - OPUS4-51106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -