TY - CONF A1 - Wilke, Olaf A1 - Schulz, Christian A1 - Richter, Matthias T1 - Test chamber measurements for the robustness validation of the test method for the determination of VOC-emissions from construction products into indoor air T2 - Healthy Buildings 2012 - 10th International conference (Proceedings) T2 - Healthy Buildings 2012 - 10th International conference CY - Brisbane, Australia DA - 2012-07-08 KW - VOC KW - Emission studies KW - Product safety KW - Emission test chamber PY - 2012 SN - 978-1-921897-40-5 SP - 1 EP - 2 (1D.2) AN - OPUS4-27560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Richter, Matthias A1 - Brödner, Doris T1 - Emission study of furniture boards for the next version of the German eco label 'Blue Angel' for wood and wooden products (RAL-UZ 38) T2 - Healthy Buildings 2012 - 10th International conference (Proceedings) T2 - Healthy Buildings 2012 - 10th International conference CY - Brisbane, Australia DA - 2012-07-08 KW - Certification/labelling KW - Sources/emissions KW - VOC KW - Emission studies KW - Healthy homes and buildings PY - 2012 SN - 978-1-921897-40-5 SP - 1 EP - 2 (1D.8) AN - OPUS4-27559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Wilke, Olaf A1 - Jann, Oliver T1 - Use of emission test chambers for the determination of chemical emissions from construction materials T2 - 1st International conference on the chemistry of construction materials (Proceedings) T2 - 1st International conference on the chemistry of construction materials CY - Berlin, Germany DA - 2013-10-07 KW - VOC KW - Emission from materials KW - Construction materials KW - Emission test chamber PY - 2013 SN - 978-3-936028-75-1 N1 - Serientitel: GDCh-Monographien – Series title: GDCh-Monographien VL - 46 SP - 259 EP - 262 AN - OPUS4-29480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Jann, Oliver A1 - Juritsch, Elevtheria A1 - Klinge, A. A1 - Roswag, E. A1 - Fontana, Patrick A1 - Miccoli, Lorenzo T1 - Indoor air emission tests of natural materials T2 - 1st ICBBM - International conference on bio-based building materials N2 - Emissions of building materials might have negative impact on human health and well-being. In the EU-funded research project H-House more than 30 natural materials (earthen dry boards and plasters, bio-based insulation materials made of wood, flax, reed, straw, etc.) used for renovation and refurbishment were tested regarding emissions of VOC, formaldehyde and radon. Different to ordinary emission tests on single materials this study focuses on the emissions from complete wall assemblies. Therefore, specially designed test chambers were used allowing the compounds to release only from the surface of the material facing indoors. The testing parameters were chosen in order to simulate model room conditions. The emission results were finally evaluated using the AgBB evaluation scheme, a procedure currently applied for the approval of flooring materials in Germany. T2 - 1st ICBBM - International conference on bio-based building materials CY - Clermont-Ferrand, France DA - 22.06.2015 KW - Emission testing KW - Natural materials KW - VOC KW - Formaldehyde KW - Radon PY - 2015 SN - 978-2-35158-154-4 SP - 641 EP - 643 AN - OPUS4-33609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias T1 - Emissionen aus Baustoffen in die Luft - Untersuchungen für gesundes Wohnen N2 - Vorstellung der Vorgehensweise bei der Bestimmung und Bewertung von Baustoffemissionen in die Innenraumluft mit Beispiel aus einem laufenden Forschungsprojekt. T2 - Die nachwachsende Stadt - Natürlich gesund bauen; Symposium im Rahmen des Tages der Architektur 2016 CY - Berlin, Germany DA - 25.06.2016 KW - Materialemission KW - VOC KW - Innenraumlufthygiene PY - 2016 AN - OPUS4-36681 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Horn, Wolfgang T1 - Bestimmung von Produktemissionen in die Luft N2 - Der Vortrag stellt die Arbeit der BAM und des Fachbereichs 4.2 Materialien und Luftschadstoffe vor und erläutert die Vorgehensweise bei der Erfassung von Materialemissionen in die Luft. Es wird auf die Problematik der diskontinuierlichen Probenahme hingewiesen und die Vorzüge kontinuierlicher online-Messverfahren für solche Messungen erörtert. T2 - SIFT-MS: A Revolution in Rapid Trace Gas and Headspace Analysis CY - Berlin, Germany DA - 14.11.2017 KW - Emission aus Materialien KW - VOC KW - Baumaterialien PY - 2017 AN - OPUS4-43182 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Horn, Wolfgang T1 - Emissionen aus Produkten in die Luft - Wer, was, warum, wie? N2 - In dieser Präsentation wird die Arbeit der BAM allgemein sowie die Arbeit des Fachbereichs 4.2 Materialien und Luftschadstoffe vorgestellt. Es wird den Fragen nachgegangen, warum und wie Materialemissionen erfasst werden sowie der Aspekt der Qualitätssicherung erläutert. T2 - Seminar BAM-HTW zu Schadstofftransfer in Gebäuden CY - Berlin, Germany DA - 28.11.2017 KW - VOC KW - Materialemissionen KW - Emissions-Referenzmaterialien PY - 2017 AN - OPUS4-43323 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Grimmer, Christoph A1 - Musyanovych, A. A1 - Strzelczyk, Rebecca Skadi A1 - Horn, Wolfgang T1 - Emission reference materials for indoor air measurements N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. VOC in combination may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. Emission concentrations can become further elevated in new or refurbished buildings where the rate of air exchange with fresh ambient air may be limited due to improved energy saving aspects. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use (building) materials proved to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable emission reference materials (ERM). For the emission test chamber procedure according to EN 16516, no artificial ERM is commercially available. The EU-funded EMPIR project MetrIAQ aims to fill this gap by developing new and improved ERMs. The goal is to obtain a material with a reproducible and temporally constant compound release (less than 10 % variability over 14 days). Two approaches were tested: the impregnation of porous materials with VOC, and the encapsulation of VOC in polymer microcapsules. Impregnation is performed with help of an autoclave and supercritical CO2. The encapsulation is done by interfacial polymerisation on VOC droplets. For both approaches, synthesis and/or material parameters were varied to obtain an optimal ERM. Findings about the optimisation of ERM generation, as well as performance of the best emission reference materials, will be presented. T2 - GAS Analysis 2024 CY - Paris, France DA - 30.01.2024 KW - Emission reference materials KW - Materials emissions test KW - VOC KW - Indoor air quality PY - 2024 AN - OPUS4-59506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Grimmer, Christoph A1 - de Krom, I. A1 - Maes, F. A1 - Lecuna, M. A1 - Musyanovych, A. A1 - Strzelczyk, Rebecca Skadi A1 - Horn, Wolfgang T1 - Metrological sound reference products for quality assurance and quality control measures in material emissions testing N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. Different VOC combinations may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use materials proven to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability and metrological traceability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable reference materials. The emission test chamber procedure according to EN 16516 comprises several steps from sample preparation to sampling of test chamber air and chromatographic analysis. Quality assurance and quality control (QA/QC) must therefore be ensured. Currently, there is a lack of suitable reference products containing components relevant for the health-related evaluation of building products. The EU-funded EMPIR project 20NRM04 MetrIAQ (Metrology for the determination of emissions of dangerous substances from building materials into indoor air) aims to develop 1) gaseous primary reference materials (gPRM), which are used for the certification of gaseous (certified) reference materials (gCRM) and 2) emission reference materials (ERM). Most commercial gas standards of indoor-relevant compounds are not certified due to the lack of primary reference materials to which the project aims to contribute. The gPRM under development is a gas-phase standard containing trace levels of VOCs in nitrogen or air from the check standard according to EN 16516 (n-hexane, methyl isobutyl ketone, toluene, butyl acetate, cyclohexanone, o-xylene, phenol, 1,3,5-trimethylbenzene) with a target uncertainty of 5 %. The gPRM can be sampled into sorbent tubes to obtain transfer standards in the form of gCRM. The well characterised ERM represents a sample of a test specimen, e.g. building material, that is loaded into the emission test chamber for a period of several days and is used to evaluate the whole emission test chamber procedure. It shall have a reproducible and temporally constant compound release of less than 10 % variability over 14 days. Different approaches for retarded VOC release, such as the encapsulation of pure compounds and the impregnation of porous materials, are being tested to reach this aim. Furthermore, the design of the ERM is accompanied by the development of a numerical model for the prediction of the emissions for each of the target VOCs. The current progress of the work on both materials will be presented. T2 - CIM 2023 - 21st International Metrology Congress CY - Lyon, France DA - 07.03.2023 KW - Indoor air quality KW - VOC KW - Materials emissions testing KW - Emission reference material KW - Quality assurance/quality control PY - 2023 AN - OPUS4-57142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nohr, Michael A1 - Wiegner, Katharina A1 - Richter, Matthias A1 - Horn, Wolfgang T1 - Development of a reference material for the measurement of (S)VOC in emission test chambers T2 - Healthy Buildings 2012 - 10th International conference (Proceedings) T2 - Healthy Buildings 2012 - 10th International conference CY - Brisbane, Australia DA - 2012-07-08 KW - VOC KW - Sources/emissions KW - Measurements KW - Laboratory studies PY - 2012 SN - 978-1-921897-40-5 SP - 1 EP - 2 (5B.10) AN - OPUS4-27568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nohr, Michael A1 - Horn, Wolfgang A1 - Wiegner, Katharina A1 - Richter, Matthias A1 - Lorenz, W. T1 - Development of a material with reproducible emission of selected volatile organic compounds - mu-chamber study JF - Chemosphere N2 - Volatile organic compounds (VOCs) found indoors have the potential to affect human health. Typical sources include building materials, furnishings, cleaning agents, etc. To address this risk, chemical emission testing is used to assess the potential of different materials to pollute indoor air. One objective of the European Joint Research Project 'MACPoll' (Metrology for Chemical Pollutants in Air) aims at developing and testing a reference material for the quality control of the emission testing procedure. Furthermore, it would enable comparison of measurement results between test laboratories. The heterogeneity of the majority of materials makes it difficult to find a suitable reference sample. In the present study, styrene, 2-ethyl-1-hexanol, N-methyl-α-pyrrolidone, lindane, n-hexadecane, 1,2-dimethyl- and 1,2-di-n-butyl-phthalate were added to 12 commercially available lacquers (6 alkyd and 6 acrylic polymer based lacquers) serving as carrier substrate. After homogenization, the mixtures were loaded into a Markes Micro-Chamber/Thermal Extractor (µ-CTE™) for curing and investigation of the emission behavior for each compound. For almost all of the investigated chemicals, the preferred glossy acrylic lacquer showed emissions that were reproducible with a variation of less than 20% RSD. Such lacquer systems have therefore been shown to be good candidates for use as reference materials in inter-laboratory studies. KW - VOC KW - Reference material KW - Emission testing KW - Indoor air KW - Inter-laboratory study PY - 2014 DO - https://doi.org/10.1016/j.chemosphere.2013.12.047 SN - 0045-6535 SN - 0366-7111 VL - 107 SP - 224 EP - 229 PB - Elsevier Science CY - Kidlington, Oxford AN - OPUS4-30816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nohr, Michael A1 - Horn, Wolfgang A1 - Jann, Oliver A1 - Richter, Matthias A1 - Lorenz, W. T1 - Development of a multi-VOC reference material for quality assurance in materials emission testing JF - Analytical and bioanalytical chemistry N2 - Emission test chamber measurement is necessary to proof building materials as sources of volatile organic compounds (VOCs). The results of such measurements are used to evaluate materials and label them according to their potential to emit harmful substances, polluting indoor air. If only labelled materials were installed indoors, this would improve indoor air quality and prevent negative impacts on human health. Because of the complex testing procedure, reference materials for the quality assurance are mandatory. Currently, there is a lack of such materials because most building products show a broad variation of emissions even within one batch. A previous study indicates lacquers, mixed with volatile organic pollutants, as reproducible emission source for a wide range of substances. In the present study, the curing of the lacquer-VOC mixture inside micro-chambers was optimised. Therefore, the humidity and the chamber flow were varied. Typical indoor air pollutants with a wide range of volatilities, for example, styrene, n-hexadecane, dimethyl and dibutyl phthalate were selected. It turned out that, under optimised curing parameters inside the micro-chamber, their emission can be reproduced with variations of less than 10 %. With this, a next important step towards a reference material for emission testing was achieved. KW - Reference material KW - Emission KW - Emission test chamber KW - Micro-chamber KW - VOC PY - 2015 DO - https://doi.org/10.1007/s00216-014-8387-2 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 11 SP - 3231 EP - 3237 PB - Springer CY - Berlin AN - OPUS4-32404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Nohr, M. A1 - Wilke, Olaf A1 - Jann, Oliver T1 - Application of a novel reference material in an international round robin test on material emissions testing JF - Indoor Air N2 - Emission testing of products is currently a rapidly increasing field of measurement activity. Labelling procedures for construction products are based on such emission test chamber measurements and hence measurement performance should be verified. A suited procedure for this purpose is the testing of one unique homogenous material in different laboratories within a Round Robin Test (RRT). Therefore, it is useful to have a reference material which can be used within inter-laboratory studies or as part of the quality management system to ensure comparable results. Several approaches on the development of reproducibly emitting materials have been published. These have in common only to emit a single VOC – toluene. Two further research studies carried out by BAM aimed to develop reference material for emissions testing containing one or more VOC in a single material. The first approach was a doped lacquer with Volatile and Semi-Volatile Organic Compounds (VOC/SVOC) and the second was Thermoplastic Polyurethane (TPU) or a Squalane/Paraffin mixture. Results received with the lacquer based material were presented in more detail. KW - Emission test chamber KW - Reference material KW - Round robin test KW - VOC PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-419412 DO - https://doi.org/10.1111/ina.12421 SN - 1600-0668 SN - 0905-6947 VL - 28 IS - 1 SP - 181 EP - 187 PB - Wiley & Sons, Ltd. AN - OPUS4-41941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Selection of gas standards, gas chromatography column and adsorbents for the measurement of very volatile organic compounds (C1–C6) in indoor air JF - Analytica Chimica Acta N2 - The ISO 16000-6 standard gives directions to adapt the analysis of volatile organic compounds (VOCs) in indoor and test chamber air to very volatile organic compounds (VVOCs). The same techniques with sorbent-based active sampling, thermal desorption and gas chromatography coupled with mass spectrometry (TD-GC/MS) should be used. However, VVOCs require gaseous standards, an adapted GC column and a reliable sampling adsorbent. This work presents experimental results to tackle those three experimental gaps. A stable standard gas mixture containing 47 VVOCs, 13 VOCs and an internal standard was successfully generated. It was employed to study the suitability of seven types of chromatography columns. The use of PLOT (Porous Layer Open Tubular) columns such as PoraBOND Q is well suitable for VVOC analysis. The recoveries of the 60 analytes on a total of 16 adsorbents and their combinations were determined: A combination of the graphitized carbon black Carbograph 5TD 40/60 and the carbon molecular sieve CarbosieveTM SII showed great recoveries for all analytes. Carbon molecular sieves adsorb water which can impair the analysis. A dry purge of the multi-sorbent in the sampling direction led to a complete water removal and promising recoveries of the analytes. KW - VVOC KW - VOC KW - ISO 16000-6 KW - Gas chromatography KW - Thermal desorption KW - Air sampling PY - 2023 DO - https://doi.org/10.1016/j.aca.2022.340561 SN - 0003-2670 VL - 1238 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-56366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Measurement of very volatile organic compounds (VVOCs) in indoor air by sorbent-based active sampling: Identifying the gaps towards standardisation JF - TrAC Trends in Analytical Chemistry N2 - The ISO 16000-6 standard describes a method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air by sorbent-based active sampling, thermal desorption and gas chromatography coupled with mass spectrometry (GC/MS). It also gives directions to adapt this methodology to very volatile organic compounds (VVOCs). Indeed, toxicologically based guideline values are being implemented for these compounds and it becomes necessary to measure them. But a comprehensive and robust measurement method is lacking. This work highlights the points that still need to be explored towards the standardisation of a suitable procedure: investigations on sorbent combinations, the suitability of chromatography columns and the use of gaseous standards are required. The biggest challenge remains in the fact that strong sorbents adsorb water together with VVOCs. Water may impair the analysis and the optimal approach to eliminate it is still to be found and integrated into the sampling strategy. KW - Solvents KW - Air analysis KW - VOC KW - Thermal desorption KW - Gas chromatography KW - ISO 16000-6 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523919 DO - https://doi.org/10.1016/j.trac.2021.116265 VL - 140 SP - 116265 PB - Elsevier B.V. AN - OPUS4-52391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -