TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Measurement of very volatile organic compounds (VVOCs) in indoor air by sorbent-based active sampling: Identifying the gaps towards standardisation N2 - The ISO 16000-6 standard describes a method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air by sorbent-based active sampling, thermal desorption and gas chromatography coupled with mass spectrometry (GC/MS). It also gives directions to adapt this methodology to very volatile organic compounds (VVOCs). Indeed, toxicologically based guideline values are being implemented for these compounds and it becomes necessary to measure them. But a comprehensive and robust measurement method is lacking. This work highlights the points that still need to be explored towards the standardisation of a suitable procedure: investigations on sorbent combinations, the suitability of chromatography columns and the use of gaseous standards are required. The biggest challenge remains in the fact that strong sorbents adsorb water together with VVOCs. Water may impair the analysis and the optimal approach to eliminate it is still to be found and integrated into the sampling strategy. KW - Solvents KW - Air analysis KW - VOC KW - Thermal desorption KW - Gas chromatography KW - ISO 16000-6 PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523919 DO - https://doi.org/10.1016/j.trac.2021.116265 VL - 140 SP - 116265 PB - Elsevier B.V. AN - OPUS4-52391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Selection of gas standards, gas chromatography column and adsorbents for the measurement of very volatile organic compounds (C1–C6) in indoor air N2 - The ISO 16000-6 standard gives directions to adapt the analysis of volatile organic compounds (VOCs) in indoor and test chamber air to very volatile organic compounds (VVOCs). The same techniques with sorbent-based active sampling, thermal desorption and gas chromatography coupled with mass spectrometry (TD-GC/MS) should be used. However, VVOCs require gaseous standards, an adapted GC column and a reliable sampling adsorbent. This work presents experimental results to tackle those three experimental gaps. A stable standard gas mixture containing 47 VVOCs, 13 VOCs and an internal standard was successfully generated. It was employed to study the suitability of seven types of chromatography columns. The use of PLOT (Porous Layer Open Tubular) columns such as PoraBOND Q is well suitable for VVOC analysis. The recoveries of the 60 analytes on a total of 16 adsorbents and their combinations were determined: A combination of the graphitized carbon black Carbograph 5TD 40/60 and the carbon molecular sieve CarbosieveTM SII showed great recoveries for all analytes. Carbon molecular sieves adsorb water which can impair the analysis. A dry purge of the multi-sorbent in the sampling direction led to a complete water removal and promising recoveries of the analytes. KW - VVOC KW - VOC KW - ISO 16000-6 KW - Gas chromatography KW - Thermal desorption KW - Air sampling PY - 2023 DO - https://doi.org/10.1016/j.aca.2022.340561 SN - 0003-2670 VL - 1238 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-56366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang A1 - Wilke, Olaf A1 - Mull, B. A1 - Richter, Matthias A1 - Brödner, Doris A1 - Mölders, N. A1 - Renner, M. T1 - Reproducibly emitting reference material for quality assurance/quality control of emission test chamber measurements N2 - Volatile Organic Compounds (VOC) are ubiquitous in the indoor air, since they emit from materials used indoors. Investigations of these materials are mostly carried out in test chambers under controlled climatic conditions. Quality control of these test chamber measurements is important but there is a lack of commercially available homogenous reference materials as required for round robin tests or quality assurance of laboratories. The approach of the present study is the impregnation of a supporting material with VOC, which are reproducibly released in measurable chamber air concentrations under standardised test conditions. A polymer made of Thermoplastic Polyurethane (TPU) was chosen as carrier material. It was impregnated with the VOC trimethyl pentanediol isobutyrat (texanol). T2 - Healthy Buildings 2017 Europe CY - Lublin, Poland DA - 02.07.2017 KW - Emissions testing KW - Volatile organic compounds KW - Polymeric material KW - CO2 assisted impregnation PY - 2017 SN - 978-83-7947-232-1 SP - Paper 0172, 1 EP - 2 AN - OPUS4-42348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bastuck, M. A1 - Baur, T. A1 - Richter, Matthias A1 - Mull, B. A1 - Schütze, A. A1 - Sauerwald, T. T1 - Comparison of ppb-level gas measurements with a metal-oxide semiconductor gas sensor in two independent laboratories N2 - In this work, we use a gas sensor system consisting of a commercially available gas sensor in temperature cycled operation. It is trained with an extensive gas profile for detection and quantification of hazardous volatile organic compounds (VOC) in the ppb range independent of a varying background of other, less harmful VOCs and inorganic interfering gases like humidity or hydrogen. This training was then validated using a different gas mixture generation apparatus at an independent lab providing analytical methods as reference. While the varying background impedes selective detection of benzene and naphthalene at the low concentrations supplied, both formaldehyde and total VOC can well be quantified, after calibration transfer, by models trained with data from one system and evaluated with data from the other system. The lowest achievable root mean squared errors of prediction were 49 ppb for formaldehyde (in a concentration range of 20–200 ppb) and 150 μg/m³ (in a concentration range of 25–450 μg/m³) for total VOC. The latter uncertainty improves to 13 μg/m³ with a more confined model range of 220–320 μg/m³. The data from the second lab indicate an interfering gas which cannot be detected analytically but strongly influences the sensor signal. This demonstrates the need to take into account all sensor relevant gases, like, e.g., hydrogen and carbon monoxide, in analytical reference measurements. KW - Indoor air quality KW - Volatile organic compounds KW - Calibration transfer KW - Selective quantification KW - Inter-lab comparison PY - 2018 DO - https://doi.org/10.1016/j.snb.2018.06.097 SN - 0925-4005 VL - 273 SP - 1037 EP - 1046 PB - Elsevier B.V. AN - OPUS4-45609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klinge, A. A1 - Roswag, E. A1 - Fontana, Patrick A1 - Richter, Matthias A1 - Hoppe, Johannes A1 - Sjöström, C. T1 - Hygroscopic natural materials versus mechanical ventilation N2 - Multi residential buildings, developed as highly energy-efficient and airtight are nowadays often fitted with mechanical Ventilation Systems as a way to overcome shortcomings and even defects tinked to indoor climate. The presented study investigates the potential of low-emitting. natural building materials with hygroscopic properties to contribute to a healthy and comfortable indoor environment, while reducing the need for mechanical Ventilation. A selection of natural building materials suitable for application as internal partition walls has been investigated with regards to their water vapour adsorption capacity. Special emphasis was placed on the investigation of modified earth plasters as well as wood-based materials, used as wall lining to provide increased adsorption capacities. In addition, tests on materials emissions (formaldehyde, VOCs, SVOCs and radon) as well as adsorption tests of airborne pollutants have been conducted in specially-designed fest chambers. All tests were performed at either the material or the component tevel. Overall results to date suggest that natural materials contribute to an improved indoor environment quality through an increased moisture-buffering capacity, low emissions and the potential to adsorb airborne pollutants, therefore reducing the need for mechanical Ventilation. T2 - Terra Lyon 2016 - XIIth World Congress on Earthen Architecture CY - Lyon, France DA - 11.07.2016 KW - Hygroscopic earth and wooden materials KW - Low emissions PY - 2016 SN - 979-10-96446-11-7 SP - 218 EP - 221 PB - Editions CRAterre CY - Villefontaine AN - OPUS4-44856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nohr, Michael A1 - Horn, Wolfgang A1 - Jann, Oliver A1 - Richter, Matthias A1 - Lorenz, W. T1 - Development of a multi-VOC reference material for quality assurance in materials emission testing N2 - Emission test chamber measurement is necessary to proof building materials as sources of volatile organic compounds (VOCs). The results of such measurements are used to evaluate materials and label them according to their potential to emit harmful substances, polluting indoor air. If only labelled materials were installed indoors, this would improve indoor air quality and prevent negative impacts on human health. Because of the complex testing procedure, reference materials for the quality assurance are mandatory. Currently, there is a lack of such materials because most building products show a broad variation of emissions even within one batch. A previous study indicates lacquers, mixed with volatile organic pollutants, as reproducible emission source for a wide range of substances. In the present study, the curing of the lacquer-VOC mixture inside micro-chambers was optimised. Therefore, the humidity and the chamber flow were varied. Typical indoor air pollutants with a wide range of volatilities, for example, styrene, n-hexadecane, dimethyl and dibutyl phthalate were selected. It turned out that, under optimised curing parameters inside the micro-chamber, their emission can be reproduced with variations of less than 10 %. With this, a next important step towards a reference material for emission testing was achieved. KW - Reference material KW - Emission KW - Emission test chamber KW - Micro-chamber KW - VOC PY - 2015 DO - https://doi.org/10.1007/s00216-014-8387-2 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 11 SP - 3231 EP - 3237 PB - Springer CY - Berlin AN - OPUS4-32404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klinge, A. A1 - Roswag-Klinge, E. A1 - Ziegert, C. A1 - Fontana, Patrick A1 - Richter, Matthias A1 - Hoppe, Johannes ED - Habert, G. ED - Schlueter, A. T1 - Naturally ventilated earth timber constructions N2 - Earth, timber, fibre boards and insulation materials based on wooden and other natural fibres offer a variety of properties beneficial for eco innovative constructions that are able to improve the energy and resource efficiency of buildings. Due to their porosity, natural building materials are vapour active and are able to buffer moisture. In combination with highly insulated and airtight but vapour permeable building envelopes, modern earth-timber constructions provide stable indoor humidity levels and can therefore be naturally ventilated while achieving highest energy efficiency standards. Experimental evidence suggests that monitored pilot buildings in Berlin do show healthy indoor air humidity levels (around 50%) in wintertime, while mechanically ventilated buildings demonstrate significantly lower values (around 25%), which have to be considered as uncomfortable and unhealthy. The application of building materials being poor in chemical emissions, particularly volatile organic compounds (VOC) and radon, improves the indoor air quality further, so that intermittent ventilation twice a day will be sufficient to provide healthy indoor air quality. The air quality in critical rooms (e.g. small bedrooms), demonstrating a smaller air volume, should be monitored if appropriate ratios of room size to occupancy level cannot be realised. Through night time ventilation in summer, vapour active earth-timber constructions provide evaporative cooling (humidity adsorption at night time and desorption during the day). As a result, indoor temperatures of earth-timber buildings range around 8 °C below the outside temperature peak, when an appropriate glazing ratio is reflected. The EU funded research project H-house is investigating various construction materials regarding water vapour adsorption as well as emission and absorption of harmful substances. Based on this investigation new wall constructions are designed to provide a healthier indoor environment. T2 - Sustainable Built Environment (SBE) Regional Conference - Expanding Boundaries: Systems Thinking for the Built Environment CY - Zurich, Switzerland DA - 15.06.2016 KW - Building materials KW - Climate control through building elements KW - Hygroscopic earthen and wooden materials KW - Natural ventilation KW - Airtight building KW - Low emissions PY - 2016 SN - 978-3-7281-3774-6 DO - https://doi.org/10.3218/3774-6 SP - 674 EP - 681 PB - vdf Hochschulverlag und der ETH Zürich CY - Zürich AN - OPUS4-37201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mull, Birte A1 - Sauerwald, T. A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Brödner, Doris A1 - Schultealbert, C. T1 - Development of a reproducibly emitting reference material for volatile organic compounds N2 - The aim of this study is the development of a reproducibly emitting reference material for volatile organic compounds (VOC). The first part of the work was carried out with styrene, for which supporting materials were successfully selected, doped and analyzed in test chambers. T2 - Indoor Air 2016 The 14th international conference of Indoor Air Quality and Climate CY - Ghent, Belgium DA - 03.07.2016 KW - Quality control KW - Emission test chamber KW - Indoor air KW - Quality assurance PY - 2016 SN - 978-0-9846855-5-4 AN - OPUS4-36849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Matthias A1 - Mull, Birte A1 - Horn, Wolfgang A1 - Brödner, Doris A1 - Mölders, N. A1 - Renner, M. T1 - Reproducibly emitting reference material on thermoplastic polyurethane basis for quality assurance/quality control of emission test chamber measurements N2 - Volatile Organic Compounds (VOC) are ubiquitous in the indoor air since they are emitted from materials used indoors. Investigations of these materials are mostly carried out in emission test chambers under controlled climatic conditions. Reference materials are an important tool for quality assurance/Quality control of emission test chamber measurements but so far they are not commercially available. In this study, a new approach was tested to develop an appropriate reference material with homogenous and reproducible emission of the VOC with well measurable air concentrations in emission test Chambers larger than 20 L at air change rates of 0.5 - 1 /h. Thermoplastic Polyurethane (TPU) was selected as Matrix material which was impregnated with 2,2,4- trimethyl-1,3-pentanediol monoisobutyrate (texanol) as test VOC using compressed carbon dioxide. An optimization of the impregnation parameters such as temperature, pressure, time, VOC injection volume and TPU sample size was performed until the targeted area specific Emission rate (SERa) value was reached. Further aspects like process control, storage effects and correlation of the sample size to the emission rate were investigated. It was found that the SERa immediately after sample preparation were not reproducible between the batches but became unified 10 days after loading into the test chamber indicating the necessity of aging before use. SERa between 13,000 and 18,000 mg m-2 h-1 were obtained, and the impregnated materials could be well stored in aluminum-coated polyethylene foil for at least seven weeks without significant losses. Furthermore, the impregnation of styrene and the SVOC 2,6-diisopropylnaphthalene was tested. KW - Reference material KW - Emissions testing KW - Volatile organic compounds KW - Polymer material KW - CO2 assisted impregnation PY - 2017 DO - https://doi.org/10.1016/j.buildenv.2017.06.005 SN - 0360-1323 SN - 1873-684X VL - 122 SP - 230 EP - 236 PB - Elsevier AN - OPUS4-40646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mull, Birte A1 - Sauerwald, T. A1 - Schultealbert, C. A1 - Horn, Wolfgang A1 - Brödner, Doris A1 - Richter, Matthias T1 - Reproducibly emitting reference materials for volatile and semi-volatile organic compounds—using finite element modeling for emission predictions N2 - Recent research into emissions of (semi-)volatile organic compounds [(S)VOC] from solid materials has focused on the development of suitable reference materials for quality assurance/quality control of emission test chamber measurements, which fulfill requirements such as homogenous and reproducible (S)VOC release. The approach of this study was to find a method for preparation of a material with predictable (S)VOC emission rates. AVOC (styrene) and an SVOC (2,6-diisopropylnaphthalene, DIPN), loaded into either vacuum grease or a 1:1 mixture of paraffin/squalane, have been tested. For the prediction of the emission rates, a model using the finite element method (FEM) was created to simulate the (S)VOC emission profiles. Theoretical and experimental results obtained in a Micro-Chamber/Thermal Extractor (μ-CTE™) and in 24 L emission test chamber measurements were in good agreement. Further properties were investigated concerning the material applicability, such as shelf life and inter-laboratory comparability. The maximum relative standard deviation in the inter-laboratory study was found to be 20%. KW - Emitting reference material KW - Emission test chamber KW - Micro-chamber KW - FEM model PY - 2017 DO - https://doi.org/10.1007/s11869-017-0508-6 SN - 1873-9318 SN - 1873-9326 VL - 10 IS - 10 SP - 1237 EP - 1246 PB - Springer Science+Business Media B.V. AN - OPUS4-41951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Jann, Oliver A1 - Kemski, J. A1 - Klingel, R. A1 - Schneider, Uwe A1 - Krocker, Christian T1 - Investigations on radon exhalation of different building materials N2 - The inhalation of 222Rn (radon) is one of the most important reasons for lung cancer, after smoking. Usually, the geological subsoil and the building ground are the dominant sources for enhanced indoor radon levels. Additionally, building materials can increase indoor radon concentrations when these materials contain higher contents of 226Ra (radium), especially in combination with low air exchange rates. For a realistic estimation of indoor radon concentrations, it is helpful to carry out measurements of radon exhalation rates from relevant materials using emission test chambers. In Germany, it is aspired to limit the total indoor radon concentration to 100 Bq/m3, whereby building materials should contribute at most 20 Bq/m3. Within a project financed by the German Institute for Construction Technology (DIBt), a practical oriented measurement procedure of the radon exhalation of building materials in accordance to ISO 16000-9 was developed to have a means for the assessment of these materials with respect to their indoor use. Test chambers with different volumes were used. The tested materials were mainly used for wall constructions (e.g., bricks, light-weight concrete) and have known specific radium activities and radon exhalation rates. T2 - Indoor Air 2011, 12th International conference on indoor air quality and climate CY - Austin, TX, USA DA - 05.06.2011 KW - Radon exhalation KW - Building material KW - Emission test chamber KW - Indoor air PY - 2011 IS - Paper 768 SP - 1 EP - 2 AN - OPUS4-24155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias T1 - Metrological sound reference products for quality assurance and quality control measures in material emissions testing N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. Different VOC combinations may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use materials proven to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability and metrological traceability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable reference materials. The emission test chamber procedure according to EN 16516 comprises several steps from sample preparation to sampling of test chamber air and chromatographic analysis. Quality assurance and quality control (QA/QC) must therefore be ensured. Currently, there is a lack of suitable reference products containing components relevant for the health-related evaluation of building products. The EU-funded EMPIR project 20NRM04 MetrIAQ (Metrology for the determination of emissions of dangerous substances from building materials into indoor air) aims to develop 1) gaseous primary reference materials (gPRM), which are used for the certification of gaseous (certified) reference materials (gCRM) and 2) emission reference materials (ERM). Most commercial gas standards of indoor-relevant compounds are not certified due to the lack of primary reference materials to which the project aims to contribute. The gPRM under development is a gas-phase standard containing trace levels of VOCs in nitrogen or air from the check standard according to EN 16516 (n-hexane, methyl isobutyl ketone, toluene, butyl acetate, cyclohexanone, o-xylene, phenol, 1,3,5-trimethylbenzene) with a target uncertainty of 5 %. The gPRM can be sampled into sorbent tubes to obtain transfer standards in the form of gCRM. The well characterised ERM represents a sample of a test specimen, e.g. building material, that is loaded into the emission test chamber for a period of several days and is used to evaluate the whole emission test chamber procedure. It shall have a reproducible and temporally constant compound release of less than 10 % variability over 14 days. Different approaches for retarded VOC release, such as the encapsulation of pure compounds and the impregnation of porous materials, are being tested to reach this aim. Furthermore, the design of the ERM is accompanied by the development of a numerical model for the prediction of the emissions for each of the target VOCs. The current progress of the work on both materials will be presented. T2 - CIM 2023 - 21st International Metrology Congress CY - Lyon, France DA - 07.03.2023 KW - Indoor air quality KW - VOC KW - Materials emissions testing KW - Emission reference material KW - Quality assurance/quality control PY - 2023 AN - OPUS4-57142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias T1 - Emission reference materials for indoor air measurements N2 - In industrialised countries more than 80% of the time is spent indoors. Products, such as building materials and furniture, emit volatile organic compounds (VOCs), which are therefore ubiquitous in indoor air. VOC in combination may, under certain environmental and occupational conditions, result in reported sensory irritation and health complaints. Emission concentrations can become further elevated in new or refurbished buildings where the rate of air exchange with fresh ambient air may be limited due to improved energy saving aspects. A healthy indoor environment can be achieved by controlling the sources and by eliminating or limiting the release of harmful substances into the air. One way is to use (building) materials proved to be low emitting. Meanwhile, a worldwide network of professional commercial and non-commercial laboratories performing emission tests for the evaluation of products for interior use has been established. Therefore, comparability of test results must be ensured. A laboratory’s proficiency can be proven by internal and external validation measures that both include the application of suitable emission reference materials (ERM). For the emission test chamber procedure according to EN 16516, no artificial ERM is commercially available. The EU-funded EMPIR project MetrIAQ aims to fill this gap by developing new and improved ERMs. The goal is to obtain a material with a reproducible and temporally constant compound release (less than 10 % variability over 14 days). Two approaches were tested: the impregnation of porous materials with VOC, and the encapsulation of VOC in polymer microcapsules. Impregnation is performed with help of an autoclave and supercritical CO2. The encapsulation is done by interfacial polymerisation on VOC droplets. For both approaches, synthesis and/or material parameters were varied to obtain an optimal ERM. Findings about the optimisation of ERM generation, as well as performance of the best emission reference materials, will be presented. T2 - GAS Analysis 2024 CY - Paris, France DA - 30.01.2024 KW - Emission reference materials KW - Materials emissions test KW - VOC KW - Indoor air quality PY - 2024 AN - OPUS4-59506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias T1 - Primary References for the Determination of Sulphur Impurities in Hydrogen N2 - Fuel cell electric vehicles are expanding quickly from light-duty to heavy-duty applications, such as buses or trucks. Hydrogen fuel quality needs to comply with ISO 14687:2025 to avoid any harmful impact on the vehicles. Total sulphur is one of the most impactful contaminants to a fuel cell system and has a threshold of 4 nmol/mol. In the European Partnership for Metrology (EPM) project Met4H2, BAM together with VSL, the National Metrology Institute of the Netherlands, developed novel gaseous primary reference materials (PRM) to improve the accuracy of the analysis of 7 sulphur compounds (hydrogen sulphide, carbonyl sulphide, methyl mercaptan, ethyl mercaptan, dimethyl sulphide, diethyl sulphide, and tetrahydrothiophene) for the quality control of hydrogen as fuel gas at this challenging amount fraction. These PRM were cross-validated using thermal desorption gas chromatography with a sulphur chemiluminescence detector (TD-GC/SCD). The results are presented and limits discussed. T2 - Joint workshop EMN for Energy Gases CY - Delft, Netherlands DA - 26.03.2025 KW - Sulphur impurities KW - Hydrogen KW - GC/SCD KW - Reference gas standards PY - 2025 AN - OPUS4-62818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - On the use of Carbograph 5TD as an adsorbent for sampling VVOCs: validation of an analytical method N2 - A standardised method for the analysis of very volatile organic compounds (VVOCs) in indoor air is still missing. This study evaluates the use of Carbograph 5TD as an adsorbent for 60 compounds (47 VVOCs + 13 VOCs) by comparing their recoveries with different spiking modes. The influence of the spiking of the tubes in dry nitrogen, humidified air or along the whole flushing duration mimicking real sampling was investigated. 49 substances (36 VVOCs from C1 to C6) had recoveries over 70% on the adsorbent in humidified air and were validated. The linearity of the calibration curves was verified for every spiking mode and the limits of detection (LOD) and quantification (LOQ) were determined. The LOQs were lower than the existing indoor air guideline values. The robustness of the method was considered by studying the influence of the sampling volume, the sampling flow rate, the humidity level and the storage of the tubes. In general, the most volatile or polar substances were the less robust ones. The combined measurement uncertainty was calculated and lies below 35% for a vast majority of the substances. An example of an emission chamber test using polyurethane foam is shown: Carbograph 5TD performs much better than Tenax® TA for VVOCs and emissions from n-butane were quantified with combined measurement uncertainty. KW - VVOC KW - Gas chromatography KW - Thermal desorption KW - Air sampling PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581113 DO - https://doi.org/10.1039/D3AY00677H VL - 15 IS - 31 SP - 3810 EP - 3821 AN - OPUS4-58111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musyanovych, A. A1 - Grimmer, Christoph A1 - Sadak, A. E. A1 - Heßling, L. A1 - Lüdicke, M. A1 - Bilsel, M. A1 - Horn, Wolfgang A1 - Richter, Matthias T1 - Polymer Capsules with Volatile Organic Compounds as Reference Materials for Controlled Emission N2 - Encapsulation of volatile organic compounds (VOCs) that could evaporate at a defined rate is of immense interest for application in emission reference materials (ERMs). Polyurethane/polyurea microcapsules with various VOC active ingredients (limonene, pinene, and toluene) were successfully produced by interfacial polymerization with Shirasu porous glass membrane emulsification in a size range between 10 and 50 μm. The effect of surfactant, VOC, monomer(s) type, and ratio has a great effect on the formulation process and morphology of capsules. The type of VOC played a significant role in the encapsulation efficiency. Due to the difference in vapor pressure and VOC/water interfacial tension, the formulation for encapsulation was optimized for each individual VOC. Furthermore, to achieve effective stability of the large droplets/capsules, a combination of ionic and nonionic surfactants was used. Optical and scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), were used to characterize the optimized microcapsules. The results showed that the obtained microcapsules exhibited a spherical shape and core–shell morphology and featured characteristic urethane-urea bonds. The amount of encapsulated VOC ranges between 54 and 7 wt %. The emission tests were performed with the help of the emission test chamber procedure (EN 16516). The limonene-loaded polyurethane/polyurea microcapsules show a change in emission rate of less than 10% within 14 days and can be considered as a potential candidate for use as an ERM. KW - Polymer microcapsules KW - Membrane emulsification KW - Polyaddition KW - Volatile organic compound (VOC) KW - Emission testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-619227 DO - https://doi.org/10.1021/acsami.4c12826 SN - 1944-8252 VL - 16 IS - 50 SP - 69999 EP - 70009 PB - ACS AN - OPUS4-61922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Krom, I. A1 - Heikens, D. A1 - Horn, Wolfgang A1 - Wilke, Olaf A1 - Richter, Matthias A1 - Baldan, A. T1 - Metrological generation of SI-traceable gas-phase standards and reference materials for (semi-) volatile organic compounds N2 - EN 16516 sets specifications for the determination of emissions into indoor air from construction products. Reliable, accurate and International System of Unit (SI)-traceable measurement results of the emissions are the key to consumer protection. Such measurement results can be obtained by using metrologically traceable reference materials. Gas-phase standards of volatile organic compounds (VOCs) in air can be prepared by a variety of dynamic methods according to the ISO 6145 series. However, these methods are not always applicable for semi-VOCs (SVOCs) due to their high boiling point and low vapour pressure. Therefore, a novel dynamic gas mixture generation system has been developed. With this system gas-phase standards with trace level VOCs and SVOCs in air can be prepared between 10 nmol mol−1 and 1000 nmol mol−1. The VOCs and SVOCs in this study have normal boiling points ranging from 146 °C to 343 °C. Metrologically traceable reference materials of the gas-phase standard were obtained by sampling of the VOC gas-phase standard into Tenax TA® sorbent material in SilcoNert® coated stainless steel tubes. Accurately known masses between 10 ng and 1000 ng per VOC were sampled. These reference materials were used to validate the dynamic system. Furthermore, the storage and stability periods of the VOCs in the reference materials were determined as these are crucial characteristics to obtain accurate and SI-traceable reference materials. In a round robin test (RRT), the reference materials were used with the aim of demonstrating the feasibility of providing SI-traceable standard reference values for SVOCs for interlaboratory comparison purposes. Based on the results from the validation, the storage and stability studies and the RRT, gas-phase standards and reference materials of VOCs and SVOCs with relative expanded uncertainties between 5% and 12% (k = 2) have been developed. These reference standards can be used as calibrants, reference materials or quality control materials for the analysis of VOC emissions. KW - SVOC KW - Dynamic calibration gas mixtures KW - Reference materials KW - Indoor air KW - Thermal desorption PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565978 DO - https://doi.org/10.1088/1361-6501/aca704 VL - 34 IS - 3 SP - 1 EP - 13 PB - IOP Publishing AN - OPUS4-56597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Schulz, Christian A1 - Richter, Matthias T1 - Test chamber measurements for the robustness validation of the test method for the determination of VOC-emissions from construction products into indoor air N2 - The document N129 of CEN/TC 351/WG 2 “Construction products - Assessment of emissions of regulated dangerous substances from construction products” is a draft Standard for the determination of emissions from construction products into indoor air. The determination is done by the use of emission test chambers (ISO 16000-9) in combination with appropriate sampling and analysis methods. Although the emission test chamber method is established since about 20 years it is still not validated. However, during the last 5 years some roundrobin tests (Wilke et al., 2009) showed good comparability for the testing in different laboratories using different test parameters. Nevertheless it was about time to Start a validation process. T2 - Healthy Buildings 2012 - 10th International conference CY - Brisbane, Australia DA - 08.07.2012 KW - VOC KW - Emission studies KW - Product safety KW - Emission test chamber PY - 2012 SN - 978-1-921897-40-5 SP - 1 EP - 2 (1D.2) AN - OPUS4-27560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Richter, Matthias A1 - Brödner, Doris T1 - Emission study of furniture boards for the next version of the German eco label 'Blue Angel' for wood and wooden products (RAL-UZ 38) N2 - In 1998 the German environmental label “Blue Angel” for wood and wooden products was the first of a series of “Blue Angels” for consumer products which set maximum values for the emission of volatile organic compounds (VOC). Since then the emission of VOC from consumer and construction products got more and more attention. In 2001 the AgBB-scheme (AgBB: Committee for health-related evaluation of building products, 2010) was developed in Germany for a health-related evaluation of building products. The AgBB-scheme has been implemented to all “Blue Angels” but RAL-UZ 38. Therefore it was about time to include the AgBB-scheme also for this environmental label. T2 - Healthy Buildings 2012 - 10th International conference CY - Brisbane, Australia DA - 08.07.2012 KW - Certification/labelling KW - Sources/emissions KW - VOC KW - Emission studies KW - Healthy homes and buildings PY - 2012 SN - 978-1-921897-40-5 SP - 1 EP - 2 (1D.8) AN - OPUS4-27559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang A1 - Wilke, Olaf A1 - Richter, Matthias T1 - Round robin tests of odour and VOC emissions from building products – What have we learned so far? N2 - Emission testing of volatile organic compounds (VOC) and odour from materials and products is commonly based on emission test chamber measurements. These measurements are often the basis of mandatory or voluntary labelling procedures. To ensure the comparability of results from different testing laboratories their performance must be verified. For this purpose, round robin tests (RRTs) are conducted. Bundesanstalt für Materialforschung und - prüfung (BAM) offers such a RRT every two years using well characterised test materials with defined VOC emissions. In addition to the VOC quantification, the evaluation of odour is also implemented in the round robin tests. At the beginning, only perceived intensity (PI) was tested but over the years also the acceptance evaluation was considered. In principle, the results of PI and acceptance evaluation are comparable. The advantage of PI is the lower number of panel members necessary for one evaluation. T2 - Healthy Buildings 2023 Europe CY - Aachen, Germany DA - 11.06.2023 KW - Perceived intensity KW - VOC-emission KW - Poficiency test KW - Chamber test KW - Odour PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580001 SP - 434 EP - 436 PB - ISIAQ (International Society of Indoor Air Quality and Climate) CY - Herndon, VA, USA AN - OPUS4-58000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -