TY - JOUR A1 - Richter, Matthias A1 - Jann, Oliver A1 - Horn, Wolfgang A1 - Pyza, Lars A1 - Wilke, Olaf T1 - System to generate stable long-term VOC gas mixtures of concentrations in the ppb range for test and calibration purposes N2 - The development of a gas mixing system (GMS) that enables dynamic and retraceable production of stable long-term VOC gas mixtures within the ppb range is discussed. In this system pure liquid substances are kept separately at a constant temperature, evaporated according to their vapour pressure and removed by a small inert gas flow. A modular set-up allows flexible handling. All vapours generated are finally united in a mixing chamber. Any concentration level of the gas mixture can be produced by a suitable combination of evaporation temperature, carrier and dilution gas flows. Test results from continuous operation over six weeks are presented. The equipment was tested on seven volatile organic compounds (VOC) of different vapour pressure ranges. It was possible to establish stable operation for the equipment during the entire period and reproducible gas concentrations which were traceable to the mass as an SI unit, thus the system is suitable for long-term tests.--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Im Beitrag wird die Entwicklung eines Gasmischsystems (GMS) beschrieben, das die dynamische und rückführbare Generierung von langzeitstabilen VOC-Gasgemischen im ppb-Bereich erlaubt. Dabei werden Reinsubstanzen separat temperiert, ihrem Dampfdruck entsprechend verdampft und durch einen kleinen Inertgasstrom abgeführt. In einer Mischkammer werden sie schließlich zusammengeführt. Durch die Kombination von Verdampfungstemperatur, Träger- und Verdünnungsgasflüssen ist die Einstellung eines beliebigen Konzentrationsniveaus des Gasgemischs möglich. Aus einem Dauerbetrieb von sechs Wochen werden Untersuchungsergebnisse gezeigt. Dabei wurde die Apparatur mit insgesamt sieben flüchtigen organischen Verbindungen (VOC) unterschiedlicher Dampfdruckbereiche betrieben. Die Anlage lief über den gesamten Zeitraum stabil und lieferte reproduzierbare und auf die Masse als SI-Einheit rückführbare Gaskonzentrationen. Somit ist das Verfahren für Langzeitanwendungen geeignet. KW - Gas mixing system KW - VOC gas mixtures KW - Low gas concentrations KW - Evaporation KW - Dynamic gas generation PY - 2013 SN - 0949-8036 SN - 0039-0771 SN - 1436-4891 VL - 73 IS - 3 SP - 103 EP - 106 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-27903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf A1 - Richter, Matthias A1 - Brödner, Doris T1 - Emission study of furniture boards for the next version of the German eco label 'Blue Angel' for wood and wooden products (RAL-UZ 38) T2 - Healthy Buildings 2012 - 10th International conference CY - Brisbane, Australia DA - 2012-07-08 KW - Certification/labelling KW - Sources/emissions KW - VOC KW - Emission studies KW - Healthy homes and buildings PY - 2012 SN - 978-1-921897-40-5 SP - 1 EP - 2 (1D.8) AN - OPUS4-27559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nohr, Michael A1 - Wiegner, Katharina A1 - Richter, Matthias A1 - Horn, Wolfgang T1 - Development of a reference material for the measurement of (S)VOC in emission test chambers T2 - Healthy Buildings 2012 - 10th International conference CY - Brisbane, Australia DA - 2012-07-08 KW - VOC KW - Sources/emissions KW - Measurements KW - Laboratory studies PY - 2012 SN - 978-1-921897-40-5 SP - 1 EP - 2 (5B.10) AN - OPUS4-27568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Jann, Oliver T1 - Determination of radon exhalation rates from construction materials using VOC emission test chambers T2 - IAQ 2013 - Environmental health in low energy buildings CY - Vancouver, British Columbia, Canada DA - 2013-10-15 KW - Radon exhalation KW - Radon measurement KW - Construction material KW - Emission test chamber KW - Indoor air quality PY - 2013 SN - 2166-4870 SP - 508 EP - 512 AN - OPUS4-29407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Matthias A1 - Jann, Oliver A1 - Kemski, J. A1 - Schneider, Uwe A1 - Krocker, Christian A1 - Hoffmann, B. T1 - Determination of radon exhalation from construction materials using VOC emission test chambers N2 - The inhalation of 222Rn (radon) decay products is one of the most important reasons for lung cancer after smoking. Stony building materials are an important source of indoor radon. This article describes the determination of the exhalation rate of stony construction materials by the use of commercially available measuring devices in combination with VOC emission test chambers. Five materials – two types of clay brick, clinker brick, light-weight concrete brick, and honeycomb brick – generally used for wall constructions were used for the experiments. Their contribution to real room concentrations was estimated by applying room model parameters given in ISO 16000-9, RP 112, and AgBB. This knowledge can be relevant, if for instance indoor radon concentration is limited by law. The test set-up used here is well suited for application in test laboratories dealing with VOC emission testing. KW - Radon exhalation KW - Radon measurement KW - Building material KW - Emission test chamber KW - Indoor air quality KW - Real room radon concentrations PY - 2013 DO - https://doi.org/10.1111/ina.12031 SN - 0905-6947 SN - 1600-0668 VL - 23 IS - 5 SP - 397 EP - 405 PB - Danish Techn. Pr. CY - Copenhagen AN - OPUS4-29408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Wilke, Olaf A1 - Jann, Oliver T1 - Use of emission test chambers for the determination of chemical emissions from construction materials T2 - 1st International conference on the chemistry of construction materials CY - Berlin, Germany DA - 2013-10-07 KW - VOC KW - Emission from materials KW - Construction materials KW - Emission test chamber PY - 2013 SN - 978-3-936028-75-1 N1 - Serientitel: GDCh-Monographien – Series title: GDCh-Monographien VL - 46 SP - 259 EP - 262 AN - OPUS4-29480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Selection of gas standards, gas chromatography column and adsorbents for the measurement of very volatile organic compounds (C1–C6) in indoor air N2 - The ISO 16000-6 standard gives directions to adapt the analysis of volatile organic compounds (VOCs) in indoor and test chamber air to very volatile organic compounds (VVOCs). The same techniques with sorbent-based active sampling, thermal desorption and gas chromatography coupled with mass spectrometry (TD-GC/MS) should be used. However, VVOCs require gaseous standards, an adapted GC column and a reliable sampling adsorbent. This work presents experimental results to tackle those three experimental gaps. A stable standard gas mixture containing 47 VVOCs, 13 VOCs and an internal standard was successfully generated. It was employed to study the suitability of seven types of chromatography columns. The use of PLOT (Porous Layer Open Tubular) columns such as PoraBOND Q is well suitable for VVOC analysis. The recoveries of the 60 analytes on a total of 16 adsorbents and their combinations were determined: A combination of the graphitized carbon black Carbograph 5TD 40/60 and the carbon molecular sieve CarbosieveTM SII showed great recoveries for all analytes. Carbon molecular sieves adsorb water which can impair the analysis. A dry purge of the multi-sorbent in the sampling direction led to a complete water removal and promising recoveries of the analytes. KW - VVOC KW - VOC KW - ISO 16000-6 KW - Gas chromatography KW - Thermal desorption KW - Air sampling PY - 2023 DO - https://doi.org/10.1016/j.aca.2022.340561 SN - 0003-2670 VL - 1238 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-56366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klinge, A. A1 - Roswag-Klinge, E. A1 - Ziegert, C. A1 - Fontana, Patrick A1 - Richter, Matthias A1 - Hoppe, Johannes ED - Habert, G. ED - Schlueter, A. T1 - Naturally ventilated earth timber constructions N2 - Earth, timber, fibre boards and insulation materials based on wooden and other natural fibres offer a variety of properties beneficial for eco innovative constructions that are able to improve the energy and resource efficiency of buildings. Due to their porosity, natural building materials are vapour active and are able to buffer moisture. In combination with highly insulated and airtight but vapour permeable building envelopes, modern earth-timber constructions provide stable indoor humidity levels and can therefore be naturally ventilated while achieving highest energy efficiency standards. Experimental evidence suggests that monitored pilot buildings in Berlin do show healthy indoor air humidity levels (around 50%) in wintertime, while mechanically ventilated buildings demonstrate significantly lower values (around 25%), which have to be considered as uncomfortable and unhealthy. The application of building materials being poor in chemical emissions, particularly volatile organic compounds (VOC) and radon, improves the indoor air quality further, so that intermittent ventilation twice a day will be sufficient to provide healthy indoor air quality. The air quality in critical rooms (e.g. small bedrooms), demonstrating a smaller air volume, should be monitored if appropriate ratios of room size to occupancy level cannot be realised. Through night time ventilation in summer, vapour active earth-timber constructions provide evaporative cooling (humidity adsorption at night time and desorption during the day). As a result, indoor temperatures of earth-timber buildings range around 8 °C below the outside temperature peak, when an appropriate glazing ratio is reflected. The EU funded research project H-house is investigating various construction materials regarding water vapour adsorption as well as emission and absorption of harmful substances. Based on this investigation new wall constructions are designed to provide a healthier indoor environment. T2 - Sustainable Built Environment (SBE) Regional Conference - Expanding Boundaries: Systems Thinking for the Built Environment CY - Zurich, Switzerland DA - 15.06.2016 KW - Building materials KW - Climate control through building elements KW - Hygroscopic earthen and wooden materials KW - Natural ventilation KW - Airtight building KW - Low emissions PY - 2016 SN - 978-3-7281-3774-6 DO - https://doi.org/10.3218/3774-6 SP - 674 EP - 681 PB - vdf Hochschulverlag und der ETH Zürich CY - Zürich AN - OPUS4-37201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nohr, Michael A1 - Horn, Wolfgang A1 - Wiegner, Katharina A1 - Richter, Matthias A1 - Lorenz, W. T1 - Development of a material with reproducible emission of selected volatile organic compounds - mu-chamber study N2 - Volatile organic compounds (VOCs) found indoors have the potential to affect human health. Typical sources include building materials, furnishings, cleaning agents, etc. To address this risk, chemical emission testing is used to assess the potential of different materials to pollute indoor air. One objective of the European Joint Research Project 'MACPoll' (Metrology for Chemical Pollutants in Air) aims at developing and testing a reference material for the quality control of the emission testing procedure. Furthermore, it would enable comparison of measurement results between test laboratories. The heterogeneity of the majority of materials makes it difficult to find a suitable reference sample. In the present study, styrene, 2-ethyl-1-hexanol, N-methyl-α-pyrrolidone, lindane, n-hexadecane, 1,2-dimethyl- and 1,2-di-n-butyl-phthalate were added to 12 commercially available lacquers (6 alkyd and 6 acrylic polymer based lacquers) serving as carrier substrate. After homogenization, the mixtures were loaded into a Markes Micro-Chamber/Thermal Extractor (µ-CTE™) for curing and investigation of the emission behavior for each compound. For almost all of the investigated chemicals, the preferred glossy acrylic lacquer showed emissions that were reproducible with a variation of less than 20% RSD. Such lacquer systems have therefore been shown to be good candidates for use as reference materials in inter-laboratory studies. KW - VOC KW - Reference material KW - Emission testing KW - Indoor air KW - Inter-laboratory study PY - 2014 DO - https://doi.org/10.1016/j.chemosphere.2013.12.047 SN - 0045-6535 SN - 0366-7111 VL - 107 SP - 224 EP - 229 PB - Elsevier Science CY - Kidlington, Oxford AN - OPUS4-30816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias A1 - Horn, Wolfgang A1 - Jann, Oliver A1 - Brödner, Doris A1 - Till, Carola T1 - Application of a new gas mixing device to test adsorptive wall materials N2 - With a gas mixing system (GMS) developed in our laboratory we created a gas mixture of four substances. Adsorptive wall materials of four different compositions were exposed to this gas mixture, consisting of 1-pentanol, hexanal, butyl acetate and n-decane. Aim of this study was to scrutinize the ability of these samples to reduce the concentration of the supplied gas. This capacity is expressed in the sorption flux F or area specific adsorption rate respectively. The test was performed referring to a draft of ISO 16000-24. T2 - Healthy buildings 2009 - 9th International conference & exhibition CY - Syracuse, NY, USA DA - 2009-09-13 KW - Gas mixing device KW - Adsorptive wall material KW - Sorption flux PY - 2009 IS - Paper 259 SP - 1 EP - 2 CY - Syracuse, NY, USA AN - OPUS4-20126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -