TY - CONF A1 - Rhode, Michael T1 - Research Activities On Hydrogen In Creep Resistant Steels in Division 9.4; Determination, Application, Materials T2 - INERIS / BAM Workshop - Hydrogen Researche Activities CY - INERIS - Institut National de I´Environnement Industriel et des Risques (Verneuil-en-Halatte, France) DA - 2015-02-12 PY - 2015 AN - OPUS4-32595 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Residual Stresses in Multi-Layer Component Welds T2 - 5th International Conference on Trends in Welding Research CY - Chicago, IL, USA DA - 2012-06-04 PY - 2012 AN - OPUS4-26607 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Börner, Andreas T1 - Rührreibschweißen von Hoch- und Mittelentropie-Legierungen N2 - Hoch- und Mittelentropie-Legierungen (engl. High/Medium Entropy Alloys–HEA/MEA) sind relativ neue Werkstoffklassen. Im Gegensatz zu herkömmlichen Le-gierungen bestehen HEA aus fünf bzw. MEA aus drei oder vier Legierungselementen im äquiatomaren Gleichgewicht. Viele HEA weisen aufgrund hervorragender struktu-reller Eigenschaftskombinationen von sehr tiefen bis zu hohen Temperaturen enor-mes Anwendungspotential auf. Die Anwendung für reale Bauteile stellt jedoch die zentrale Frage der Eignung für die fügetechnische Verarbeitung. Dieser Aspekt findet in der weltweiten Materialforschung bisher kaum Beachtung. Anforderungen an die zuverlässige und sichere fügetechnische Verarbeitung dieser Werkstoffe sind von wesentlicher Bedeutung hinsichtlich wirtschaftlicher Bauteilfertigung für spätere po-tenzielle Anwendungsbereiche, bspw. in der Energietechnik. Das Rührreibschweißen (engl. Friction Stir Welding–FSW) stellt hierbei einen vielversprechenden Fügepro-zess dar, dessen Hauptvorteil in der Schweißprozesstemperatur unterhalb der Schmelztemperatur der zu fügenden Werkstoffe liegt. Dies bedingt die Vermeidung der Ausbildung von harten, versprödenden intermetallischen Phasen, wie sie z. B. beim konventionellen Schmelzschweißen von Eisen-Aluminium-Verbindungen auf-treten. Die vorliegende Arbeit stellt grundlegende Untersuchungen zur Schweißbar-keit einer CoCrFeMnNi-Legierung (HEA) und einer CoCrNi-Legierung (MEA) mit dem FSW-Prozess vor. Die Versuchsschweißungen werden mittels mikroskopischer Analysen hinsichtlich des Schweißnahtaufbaus sowie Schweißnahtfehlern charakte-risiert. FSW zeigt sich als grundlegend geeignet zur Verbindungsschweißung der HEA bzw. MEA. Anhand dieser Ergebnisse kann eine weitere Bewertung der Schweißbar-keit erfolgen. T2 - 4 Niedersächsisches Symposium Materialtechnik Clausthal CY - Online meeting DA - 25.02.2021 KW - Hochentropie Legierung KW - Rührreibschweißen KW - Mediumentropie Legierung PY - 2021 SP - 502 EP - 511 AN - OPUS4-52255 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaiser, Sebastian A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Schweißen im Betrieb an Wasserstoff-Ferngasleitungen N2 - Wasserstoff gilt als Energieträger für die Erreichung der Klimaziele und einer nachhaltigen zukünftigen Energieversorgung. Für den notwendigen Transport des Wasserstoffs in großem Maßstab und über weite Entfernungen ist eine zuverlässige Pipeline-Infrastruktur erforderlich. Umfassende weltweite Forschungsprojekte deuten auf die allgemeine Kompatibilität der verwendeten überwiegend ferritischen Stähle für die vorgesehenen Betriebsbedingungen von bis zu 60 °C bei 100 bar Wasserstoff hin. Dies ist jedoch nicht direkt übertragbar auf schweißtechnische Reparatur- und Wartungsarbeiten an im Betrieb befindlichen Pipelines. Ein im Erdgasnetz etabliertes Verfahren stellt das „Hot-Tapping“ dar, bei dem eine unter Druck stehende Pipeline im Betrieb angebohrt wird. Hierfür kommt ein an die Rohrleitung geschweißtes Formstück zum Einsatz, das die Montage der Bohr-/Lochschneidemaschine ermöglicht. In den Richtlinien EIGA 121/14 bzw. AIGA 033/14 wird darauf hingewiesen, dass das Anbohren von Wasserstoffleitungen kein Routineverfahren darstellt: “[…] a hydrogen hot-tap shall not be considered a routine procedure […]“. Dieser Aussage liegt unter anderem zugrunde, dass das Anschweißen des Formstücks an das Rohr und alle zu erwartenden Wärmebehandlungen vor und nach dem Schweißen eine lokale Temperaturerhöhung verursachen. Insbesondere auch an der Rohrinnenfläche, die dem Wasserstoff ausgesetzt ist. Diese erhöhten Temperaturen begünstigen die Absorption und Diffusion von Wasserstoff in das Material. Besonders zu beachten ist außerdem die lokal auftretende kurzzeitige Austenitisierung des Materials, die eine lokal stark erhöhte Wasserstoffkonzentration verursachen kann. Aus den genannten Gründen gibt diese Studie einen kurzen Überblick über die derzeit weltweit verfügbaren Forschungsprojekte zum Schweißen von Wasserstoff-Pipelines im Betrieb. Vorgestellt werden unter anderem erste Ergebnisse des Kooperationsforschungsprojektes H2SuD, das derzeit an der BAM bearbeitet wird. T2 - 6. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 20.02.2025 KW - Materialdegradation KW - Pipeline KW - Schweißen KW - Wasserstoff PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632731 SN - 978-3-8440-9961-4 SN - 978-3-8191-0041-3 DO - https://doi.org/10.21268/20250506-12 SN - 2364-0804 SN - 3052-3524 N1 - Serientitel: Fortschrittsberichte der Materialforschung und Werkstofftechnik – Series title: Bulletin of Materials Research and Engineering VL - 15 SP - 381 EP - 390 PB - Shaker Verlag CY - Düren AN - OPUS4-63273 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Schweißen im Wasserstoffanlagen- und Behälterbau - Eine Kurzübersicht N2 - Wasserstoff erfüllt die zentrale Rolle für die Umwandlung der bisherigen fossil-basierten Energieerzeugung und -nutzung auf eine dekarbonisierte, nachhaltige Form. Dazu muss der Wasserstoff erzeugt, gespeichert, transportiert werden, bevor er wieder der Nutzung zugeführt wird. Hierzu sind entlang der gesamtem Prozesskette Wasserstofftechnologien notwendig, die einen sicheren Betrieb erfordern. Hierbei kommt dem schweißtechnischen Anlagen- und Behälterbau wesentliche Bedeutung zu, insbesondere (aber nicht ausschließlich) für Speicherung und Transport des Wasserstoffes. Der vorliegende Beitrag gibt einen kurzen Überblick, wo und wie die konventionelle Schweißtechnik hierzu wichtige Beiträge leistet. Die additive Fertigung, also das „Drucken“ von Bauteilen wird dabei zunehmend wichtiger, entlang der gesamtem Prozesskette der Wasserstofftechnologien. Gleichwohl darf nicht unterschätzt werden, dass auch wesentlicher Bedarf an der Erweiterung und teilweiser Neufassung von bestehenden Regel- und Normenwerken besteht. T2 - 51. Sondertagung "Schweißen im Behälter- und Anlagenbau" CY - Munich, Germany DA - 01.03.2023 KW - Wasserstoff KW - Anlagenbau KW - Schweißen KW - Studie KW - Pipeline PY - 2023 SN - 978-3-96144-219-5 VL - 387 SP - 83 EP - 88 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-57075 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Schweißen im Wasserstoffanlagen- und Behälterbau - Eine Kurzübersicht N2 - Wasserstoff erfüllt die zentrale Rolle für die Umwandlung der bisherigen fossil-basierten Energieerzeugung und -nutzung auf eine dekarbonisierte, nachhaltige Form. Dazu muss der Wasserstoff erzeugt, gespeichert, transportiert werden, bevor er wieder der Nutzung zugeführt wird. Hierzu sind entlang der gesamtem Prozesskette Wasserstofftechnologien notwendig, die einen sicheren Betrieb erfordern. Hierbei kommt dem schweißtechnischen Anlagen- und Behälterbau wesentliche Bedeutung zu, insbesondere (aber nicht ausschließlich) für Speicherung und Transport des Wasserstoffes. Der vorliegende Beitrag gibt einen kurzen Überblick, wo und wie die konventionelle Schweißtechnik hierzu wichtige Beiträge leistet. Die additive Fertigung, also das „Drucken“ von Bauteilen wird dabei zunehmend wichtiger, entlang der gesamtem Prozesskette der Wasserstofftechnologien. Gleichwohl darf nicht unterschätzt werden, dass auch wesentlicher Bedarf an der Erweiterung und teilweiser Neufassung von bestehenden Regel- und Normenwerken besteht. T2 - 51. Sondertagung "Schweißen im Behälter- und Anlagenbau" CY - Munich, Germany DA - 28.02.2023 KW - Wasserstoff KW - Fügetechnik KW - Schweißen KW - Studie PY - 2023 AN - OPUS4-57076 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Simulation der Wasserstoffverteilung in UP-geschweißten Grobblechen als Bewertungstool für die Kaltrissanfälligkeit von Offshorestrukturen N2 - Gründungsstrukturen für Offshore-Windkraftanlagen bestehen in der Regel aus hochfesten Stahlgrobblechen, die im UP-Verfahren geschweißt werden, durch den u.U. größere Mengen an Wasserstoff eingebracht werden können. Die große Blechdicke führt zudem zu langen Diffusionswegen und einer verlängerten Diffusionszeit für den Wasserstoff. Infolgedessen kann sich der Wasserstoff in Bereichen mit hoher mechanischer Spannung und Dehnung ansammeln und daher zu einer verzögerten Kaltrissbildung führen. Aufgrund der verzögerten Diffusion muss daher eine Mindestwartezeit von bis zu 48 h eingehalten werden, bevor eine zerstörungsfreie Prüfung durchgeführt wird. Darüber hinaus ist die Beurteilung möglicher Kaltrissstellen sehr komplex. Es wurde daher ein numerisches Modell zur Abbildung einer bauteilähnlichen Schweißnahtprüfung entwickelt. Dazu wurde das Temperaturfeld während des Schweißens und der anschließenden Abkühlung experimentell bestimmt und numerisch simuliert. Auf dieser Grundlage wurde Diffusionsmodell zur numerischen Simulation der zeitlich-örtlichen Wasserstoffkonzentration erstellt. Mit diesem Modell wurden zwei Anwendungsfälle simuliert: (1) Veränderung der Wasserstoffverteilung als Funktion des Temperaturzyklus während des Mehrlagenschweißens und (2) für das Wartezeitintervall ≤ 48 h. Ein Vorteil des Diffusionsmodells ist die Simulation einer normierten Konzentration, d.h. zwischen „0“ (kein Wasserstoff) und „1“ (max. Konzentration), die auf experimentell ermittelte Wasserstoffkonzentrationen skaliert werden kann. T2 - 6. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 20.02.2025 KW - Gründungsstrukturen KW - Offshore KW - Kaltrissbildung KW - Wasserstoff KW - Numerische Simulation PY - 2025 AN - OPUS4-62616 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Strom ohne Ende? Herausforderungen für die Fügetechnik im Zuge der Energieerzeugung im 21. Jahrhundert N2 - Die Energiewirtschaft ist bereits jetzt in massivem Umbruch. Herausforderungen der Energiewende sind u.a. die Einbindung von regenerativen Energiequellen und deren Speicherung. Dieses stellt auch die Fügetechnik, als zentrale Produktionstechnologie für die Komponentenfertigung, vor neue Aufgaben. Der Vortrag gibt zu ausgewählten Themen einen kurzen Überblick. T2 - Vortragsreihe des DVS Bezirksverbandes Berlin CY - Berlin, Germany DA - 31.10.2018 KW - Fügetechnik KW - Energieerzeugung KW - Schweißen KW - Komponenten PY - 2018 AN - OPUS4-46483 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Unter Druck gesetzt: Die unterschätzte Bedeutung des In-Service-Schweißen für die Wasserstoffinfrastruktur der Zukunft N2 - Wasserstoff leistet als Energieträger der Zukunft einen entscheidenden Beitrag zur nachhaltigen Energieversorgung. Der Transport wird vorwiegend durch das europäische Ferngasleitungsnetz erfolgen. Bisherige Untersuchungen zeigen, dass bisher verwendete Rohrstähle grundsätzlich für den Wasserstofftransport geeignet sind. Diese Eignung ist nicht direkt auf Reparaturfragestellungen im Betrieb übertragbar, da Schweißungen aus technisch-ökonomischen Gründen oft unter fortwährendem Gasfluss durchgeführt werden. Ein im Erdgasnetz angewandtes Konzept ist das Anbohren druckführender Pipelines („Hot Tapping“). Dazu werden Zylinderhalbschalen zuerst durch Längs- und dann per Rohrrundnähten an die Pipeline geschweißt. Essenziell ist dabei die maßgeschneiderte Wärmeeinbringung, um das „Durchbrennen“ in die Pipeline zu vermeiden. Für zukünftige Wasserstoffpipelines liegt der Fokus u.a. auf dünnwandigen Leitungen. Im Gegensatz zu Erdgas, führen die beim Schweißen erreichten hohen Temperaturen an der Innenseite der Pipeline zu einer zusätzlichen Wasserstoffaufnahme in den Rohrstahl mit möglicher Materialdegradation. Zur praktischen Lösung der Fragestellung, sind internationale Aktivitäten im Gang. Diese umfassen bspw. die Möglichkeiten und Weiterentwicklung von realistischen Prüfkonzepten (u.a. durch maßstäbliche Bauteilversuche). Dazu untersucht die Bundesanstalt für Materialforschung und -prüfung (BAM) in einem DVGW-geförderten Kooperationsprojekt zusammen mit den grossen Gasnetzbetreibern, die Frage der Übertragbarkeit der Schweißkonzepte der Erdgastechnik auf zukünftiger Wasserstoffpipelines. T2 - Herbstsitzung des DGM Arbeitskreises "Materialprüfung unter Wasserstoff" CY - Dortmund, Germany DA - 19.11.2024 KW - Wasserstoff KW - Pipeline KW - Reparaturschweißen KW - Komponententest PY - 2024 AN - OPUS4-61723 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Untersuchung von Spannungsrelaxationsrissmechanismen mittels Simulation einachsiger Spannungszustände in der Grobkornzone von UP-geschweißtem CrMoV-Stahl N2 - Druckbehälter mit großen Wandstärken (250+ mm) aus hochwarmfesten, niedriglegierten Stählen werden hauptsächlich Mehrdraht-Unterpulver-(UP) geschweißt. Der damit verbundene hohe Energieeintrag führt unter anderem zu hohen lokalen Schweißeigenspannungen, welche bei unsachgemäßer Prozessführung der notwendigen Wärmenachbehandlung (PWHT) zu Spannungsrelaxationsrissen (SRR) führen. In den Bewertungskriterien zur Spannungsrelaxationsrissanfälligkeit finden weder die, mit klassischen, freischrumpfenden Schweißversuchen nicht abbildbaren, erhöhten Eigenspannungen aus der Schrumpfbehinderung der Bauteilsteifigkeit Beachtung, noch die damit einhergehenden metallurgischen Effekte wie bspw. das Ausscheidungswachstum während der PWHT und damit einhergehende Härteunterschiede an den Korngrenzen bzw. die vorzeitige Alterung durch Bildung differenter Sonderkarbide. Die Aufheizrate des PWHT als Einflussfaktor für die SRR-Bildung bleibt derzeit ebenfalls unbeachtet. Daher wurde eine Versuchsmethodik entwickelt, die eine mögliche SRR-Anfälligkeit durch die Kopplung von thermischer und mechanischer Beanspruchung untersucht. Dazu wurden Proben mit unterschiedlichen Gefügen thermisch simuliert und während des PHWT repräsentativ mit sehr hohen Lasten/Eigenspannungen mechanisch beansprucht. Dazu wurde an Kleinzugproben für das as-welded UP-Schweißgut und die thermisch simulierte GKZ eines 13CrMoV9-10 die Dehnung des Prüfbereichs bei variablen Querspannungen und Aufheizraten gemessen. Diese aufheizraten- und gefügeabhängige Längenänderung der Probe wurde durch mathematische Prozeduren analysiert. Damit war es möglich, singuläre werkstoffliche Effekte auf μm-Ebene (Ausscheidungswachstum) als summarische Längen- bzw. Volumenänderung per klassischer Kurvendiskussion zu beschreiben. Die erste und zweite Ableitung zeigten eine ausscheidungsabhängige Härtezunahme, welche von der Spannung und Aufheizrate im geringen Maß linear abhängig war. Gleichzeitig sind Volumenänderungen bei Bildung und Wachstum differenter Sonderkarbide bekannt, welche zusammen mit gefügespezifischen Untersuchungen und der neuen Versuchsmethodik zu einer verbesserten Beurteilung der SRR-Anfälligkeit von geschweißten CrMoV-Stählen beitragen sollen. Prinzipiell ist die vorgestellte Methodik jedoch werkstoff- und zustandsoffen, d.h. sowohl für Grundwerkstoff e als auch definierte Wärmebehandlungsbedingungen geeignet. Dies ermöglicht erstmals die Schaffung einer Transfergröße zwischen Labor und realen Schweißungen, unter Beibehaltung der Bauteilsteifigkeit, d.h. vereinfachte, aber realistische Eigenspannungsabbildung als Grundlage für weitergehende gefügespezifische metallurgische Effekte während des PWHT. T2 - DVS Congress 2022 CY - Koblenz, Germany DA - 19.09.2022 KW - UP-Schweißen KW - Spannungsrelaxationsriss KW - Wärmenachbehandlung KW - Ersatzgeometrie KW - Prüfverfahren PY - 2022 SN - 978-3-96144-190-7 VL - 382 SP - 69 EP - 75 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-55946 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Vereinfachte Prüfmethode zur Bewertung der Gefahr wasserstoffunterstützter Kaltrisse (HACC) beim Lichtbogenschweißen hochfester Stähle N2 - Die Präsentation gibt einen Kurzüberblick über die Versuchsmethodik und den erreichten Projektfortschritt des IGF-Projektes 01IF22624N bzw. DVS-Nr. 01.3410. Ziel der Untersuchungen ist eine Methodik für eine vereinfachte Probenform zur Bewertung der Kaltrissanfälligkeit durch Wasserstoff bei hochfesten, geschweißten Stählen. Dazu wird ISO 3690 (Quantifizierung des H-Gehaltes) mit direkt prüfbaren Querzugproben kombiniert, die die realistische Bewertung der Schweißnaht unter industriepraktischen Parametern ermöglicht. T2 - Sitzung des NA 092-00-05 GA Gemeinschaftsarbeitsausschuss NAS/NMP: Zerstörende Prüfung von Schweißverbindungen (DVS AG Q 4/Q 4.1) CY - Online meeting DA - 20.03.2025 KW - Schweißnaht KW - Kaltrissbildung KW - Wasserstoff KW - Prüfung KW - ISO 3690 PY - 2025 AN - OPUS4-62759 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Czeskleba, Denis A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Vermeidung von Kaltrissen in UP-Dickblechschweißungen aus hochfesten Stählen N2 - Der Einsatz hochfester Stähle wie S690 erlaubt durch geringeren Materialeinsatz nicht nur eine immer wichtiger werdende Verringerung von CO₂-Emissionen, sondern auch eine effektive Kosten- und Gewichtsreduktion dickwandiger Bauteile. Insbesondere bei Wandstärken von bis zu 200 mm ist das Unterpulver- (UP-)Mehrdrahtschweißen aufgrund seiner hohen Effizienz eine gängige Praxis. Allerdings steigt bei hochfesten Stählen, hier vorliegend S690, die Gefahr wasserstoffunterstützter Kaltrisse (HAC), aufgrund ihrer Mikrolegierungskonzepte im Zusammenspiel mit hohen Eigenspannungen aus dem Schweißprozess und resultierend aus hohen Bauteilsteifigkeiten. Zusätzlich kann die erhebliche Aufmischung von Grund- und Zusatzwerkstoff beim UP-Schweißen zu risskritischen Gefügen führen, in denen der diffusible Wasserstoff besonders schädlich wirkt. Für Gefüge UP-geschweißter Bauteile liegen keine gesicherten Daten bezüglich Wasserstoffdiffusionskoeffizienten bzw. HAC-Rissanfälligkeit vor. Insbesondere die mikrostrukturabhängige Diffusion von durch den UP-Schweißprozess eingebrachtem Wasserstoff war nicht hinreichend gesichert. Ziel des Forschungsvorhabens war es daher, einen Beitrag zur kaltrisssicheren UP-Schweißverarbeitung hochfester Dickbleche zu leisten. Hierzu wurden systematisch unterschiedliche GW (S690 TM/QL) untersucht, die sich insbesondere in ihren Mikrostrukturen unterscheiden. Diese zeigten in Voruntersuchungen stark divergente Härteverteilungen im Besonderen in der letzten Lage der Schweißung, sodass ein ebenfalls stark divergentes Diffusionsverhalten postuliert wurde. Zunächst wurde der Wasserstoffeintrag über die Draht-Pulver-Kombination gemäß ISO 3690 ermittelt. Anschließend erfolgten mehrlagige Schweißungen sowohl unter freiem Schrumpfen als auch unter äußerer Zwängung. Eine detaillierte Gefügecharakterisierung und mechanisch-technologische Prüfungen, sowie Eigenspannungsmessungen ermöglichten die Bewertung der Rissanfälligkeit bei variierter Wärmeführung (schweißgeschwindigkeitsgesteuert). Zur quantitativen Beschreibung der Wasserstoffdiffusion wurden das Schweißgut (SG), die Wärmeeinflusszone (WEZ) und die Grundwerkstoffe (GW) mittels elektrochemischer Beladung und Trägergasheißextraktion (TGHE), sowie Permeationsversuchen untersucht. Basierend auf den ermittelten Diffusionskoeffizienten wurden numerische Modelle erstellt, um den Einfluss verschiedener Diffusionskoeffizienten auf die Wasserstoffverteilung in der Schweißnaht zu evaluieren. Entgegen dem Postulat wurden keine signifikanten Unterschiede in der Wasserstoff-Diffusionsgeschwindigkeit gemessen. Beide GW-Klassen (QL vs. TM) als auch das SG und die WEZ wiesen für diesen Werkstofftyp charakteristische Diffusionskoeffizienten mit nur geringen Unterschieden auf. Dies zusammen mit den nur sehr geringen Unterschieden in der Ausprägung der Eigenspannungen und mechanisch-technologischen Eigenschaften der Nähte, weisen auf eine hohe Kaltrisssicherheit hin. Die in allen Untersuchungen geringen Unterschiede zwischen QL und TM sprechen, hinsichtlich des HAC-Risikos aufgrund einer differenten Wasserstoffdiffusion, für die Austauschbarkeit der beiden Werkstoffe in der Produktion. KW - Wasserstoffrisse KW - Unterpulverschweißen KW - Wasserstoffdiffusion PY - 2025 SP - 1 EP - 150 AN - OPUS4-63127 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Wasserstoffabhängige mechanische Eigenschaften der Schweißnahtgefüge niedriglegierter Stähle für Ferngasleitungen N2 - Der Vortrag stellt aktuelle Ergebnisse des Fosta-Forschungsprojektes P1668 vor. Ziel ist hier, die Wasserstoffresistenz geschweißter Mikrostrukturen gängiger und neuer Pipeline-Stählen zu untersuchen. Im Fokus stehen hierbei durch physikalische Simulation nachgebildete, schweißnahtähnliche Mikrostrukturen in Form von (1) Wärmeeinflusszonen mit unterschiedlicher Abkühlgeschwindigkeit und (2) angelassene Zonen zur Simulation der typischen Mehrlagenschweißungen. Aus diesen repräsentativen Mikrostrukturen werden Zugproben extrahiert welche elektrochemisch oder mit Druckwasserstoff beladen werden. Aus diesen wird dann eine Datenbasis der spezifischen mechanische Eigenschaften unter Wasserstoff bereitgestellt. Die so entwickelte, praxisorientierte Prüfstrategie ermöglicht die schnelle und zuverlässige Bewertung sowohl in Betrieb befindlicher als auch neuer Rohrleitungswerkstoffe. T2 - Herbstsitzung des DGM Arbeitskreises "Materialprüfung unter Wasserstoff" CY - Dortmund, Germany DA - 19.11.2024 KW - Wasserstoff KW - Pipeline KW - Mechanische Kennwerte KW - Schweißen KW - Prüfung PY - 2024 AN - OPUS4-61750 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Czeskleba, Denis A1 - Irfan, Muhammad Dary A1 - Wandtke, Karsten A1 - Kaiser, Sebastian A1 - Kannengießer, Thomas T1 - Wasserstoffdiffusion in hochfesten UP-Schweißverbindungen – einfacher als gedacht N2 - Hochfeste Baustähle werden im modernen Stahlbau aus wirtschaftlichen und konstruktiven Gründen zunehmend eingesetzt, z. B. im Gebäude-, Anlagen- oder Mobilkranbau. Durch den Einsatz von Stählen mit höheren 690 MPa) können durch die Reduzierung der Wanddicke erhebliche Gewichtsreduzierungen und geringere Verarbeitungskosten erreicht werden, insbesondere bei der Verwendung des Unterpulverschweißen (UP) durch seine hohe Abschmelzleistung. Aufgrund ihrer speziellen Mikrostruktur haben hochfeste Stähle eine begrenzte Duktilität und sind anfälliger für wasserstoffunterstützte Kaltrisse (HACC). Darüber hinaus führen große mittels UP geschweißter Blechdicken zu hohen Schweißeigenspannungen und langen Diffusionswegen für z.B. durch den Schweißprozess eingebrachten Wasserstoff. Abgesicherte Diffusionskoeffizienten für UP-Schweißungen dieser Festigkeitsklasse sind als Grundlage für die Abschätzung des Zeitintervalls einer möglichen verzögerten Kaltrissbildung oder für Nachwärmung zur Wasserstoffreduktion nur sehr begrenzt verfügbar. Aus diesem Grund wurden experimentelle Versuche zur mikrostruktur-spezifischen Diffusion in S690-Schweißungen durchgeführt. Dazu wurde ein thermomechanisch (TM) gewalzter bzw. vergüteter (QL) Zustand dieses Werkstoffs betrachtet, sowie das jeweilige charakteristische Schweißgut und WEZ. Dazu wurden den Schweißmikrostrukturen lokal Proben entnommen und über Permeations- bzw. Warmauslagerungsversuche die gefügespezifische Diffusion von Raumtemperatur bis 400°C charakterisiert. Im Gegensatz zu bekannten Effekten des Wärmebehandlungszustandes der Grundwerkstoffe auf die Diffusion in MSGSchweißverbindungen, zeigten die Wasserstoffdiffusionskoeffizienten über alle untersuchten Gefügezustände keine signifikanten Unterschiede, insbesondere nicht für die lokale WEZ diverser, untersuchter Streckenergiebereiche. Aus praktischer Anwendersicht können daher dickwandige UP-Verbindungen hinsichtlich einer verzögerten Wasserstoffdiffusion nur anhand der einfach ermittelbaren Diffusionskoeffizienten für den Grundwerkstoffkoeffizient beurteilt werden. Zudem zeigte sich, dass der unterschiedliche Walz- und Wärmebehandlungszustand (TM vs. QL) in UP-Schweißnähten eine untergeordnete Rolle für die Wasserstoffdiffusion und damit für die mögliche Zeitverzögerung der Kaltrissbildung hat. Ergänzende numerische Simulationen der Wasserstoffverteilung bestätigten das Verhalten. T2 - DVS Congress 2025 CY - Essen, Germany DA - 16.09.2025 KW - Unterpulverschweißen KW - Wasserstoffdiffusion KW - Wasserstoffunterstützte Kaltrissbildung KW - Wasserstoffrisse PY - 2025 SN - 978-3-96144-299-7 DO - https://doi.org/10.53192/DVSC20250330 VL - 401 SP - 330 EP - 340 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-64132 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Wasserstoffdiffusion und lokale Volta-Potentiale in Hoch- und Mittelentropie-Legierungen N2 - Hochentropie-Legierungen (HEAs) zeichnen sich durch einen Mischkristall-System aus mindestens fünf und Mittelentropie-Legierungen (MEAs) durch mindestens drei Hauptlegierungselemente aus, in äquiatomarer Zusammensetzung. Sie zeigen außergewöhnliche Anwendungseigenschaften, wie z.B. hohe Festigkeit, Duktilität oder Korrosionsbeständigkeit. Zukünftige HEA/MEA-Komponenten aufgrund ihrer Eigenschaften für wasserstoffhaltige Umgebungen (wie Behälter für kryogene oder Hochdruckspeicherung) von Interesse. Daher ist die Bewertung der Wasserstoffabsorption und die Diffusion in diesen Materialien von großer Bedeutung. Dazu wurden in unserer Studie eine CoCrFeMnNi-HEA und eine CoCrNi-MEA untersucht. Die Proben wurden elektrochemisch mit Wasserstoff beladen. Für die Ermittlung des Wasserstoffdiffusionsverhaltens wurde die thermische Desorptionsanalyse (TDA) mit unterschiedlichen Heizraten bis zu 0,250 K/s angewandt. Die nachfolgende Peakentfaltung der Signale führte zu Hochtemperatur-Desorptionsspitzen und Wasserstofftrapping auch über 280°C. Eine resultierende Gesamtwasserstoffkonzentration > 40 ppm wurde für den MEA ermittelt und > 100 ppm für den HEA. Dies deutet auf zwei wichtige Effekte hin: (1) verzögerte Wasserstoffdiffusion und (2) eine beträchtliche Menge an getrapptem Wasserstoff auch bei hoher Temperatur. Beide Effekte können hinsichtlich einer wasserstoffunterstützten Rissbildung kritisch werden, dies erfordert jedoch weitere Untersuchungen. Zusätzlich erfolgte die Bestimmung des lokalen Volta-Potentials mittels hochauflösender Kelvin-Sonden-Kraft-Mikroskopie (SKPFM). Die ermittelten Scans zeigen einen bestimmten Einfluss der Wasserstoffbeladung auf die Potentiale. T2 - Symposium on Materials and Joining Technology CY - Online meeting DA - 07.09.2020 KW - Wasserstoff KW - High-entropy alloy KW - Diffusion KW - Scanning kelvin probe force microscopy KW - Thermal desorption analysis PY - 2020 AN - OPUS4-51187 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Wasserstoffdiffusion und mechanische Eigenschaften in den schweißnahtspezifischen Gefügen eines Druckbehälterstahls T2 - MDDK Magdeburg CY - Magdeburg, Germany DA - 2013-05-30 PY - 2013 AN - OPUS4-28624 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Wasserstoffdiffusion und mechanische Eigenschaften in der thermisch simulierten WEZ (Wärmeeinflusszone) eines Druckbehälterstahls T2 - MDDK Magdeburg CY - Magdeburg, Germany DA - 2013-11-14 PY - 2013 AN - OPUS4-29601 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Wasserstoffeffekt auf die Degradiation der mechanischen Eigenschaften von T24 Schweißgut und simulierter Grobkorn-WEZ T2 - MDDK Magdeburg CY - Magdeburg DA - 2014-11-27 PY - 2014 AN - OPUS4-32157 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Schaupp, Thomas ED - Brockmann, S. ED - Krupp, U. T1 - Wasserstoffunterstützte Kaltrissbildung in Schweißnähten hochfester Stahlgüten - Anforderungen an die Prüfung N2 - Wasserstoff kann eine Rissbildung u.U. auch noch nach Tagen in der Schweißnaht bewirken. Dabei stellen höherfeste Stähle etablierte Kaltrissprüftests vor Herausforderungen. Generell nimmt die zur Rissvermeidung tolerierbare Wasserstoffkonzentration mit zunehmender Festigkeit der Werkstoffe ab. Zudem verändern weiterentwickelte Schweißverfahren die Nahtgeometrie und Wärmeeinbringung und die Ausbildung risskritischer Mikrostrukturen (z.B. Wärmeeinflusszone). Am Beispiel des Implant- und Tekken-Tests werden die Einsatz- u. Anwendungsgrenzen bewertet. Zu berücksichtigen ist, dass beim Schweißen eine äußere mechan. Beanspruchung durch bauteilspezifische Steifigkeitsverhältnisse wirksam ist. Zusätzlich werden weiterführende Prüfverfahren zur Bestimmung der Wasserstoffkonzentration und -diffusion in Schweißnähten vorgestellt, wie die Trägergasheißextraktion (TGHE) für die Ermittlung der Wasserstoffkonzentration (ISO 3690) oder Hochtemperaturdiffusionskoeffizienten. Diese Werte sind für die schweißtechnische Praxis von großer Bedeutung, um Haltezeiten z.B. für das Wasserstoffarmglühen abzuleiten. T2 - Tagung Werkstoffprüfung 2021 CY - Online meeting DA - 02.12.2021 KW - Wasserstoff KW - Kaltrissprüfung KW - Schweißen KW - Stahl KW - Hochfest PY - 2021 SN - 978-3-941269-98-9 SP - 15 EP - 20 PB - Stahlinstitut VDEh CY - Düsseldorf AN - OPUS4-53900 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Wasserstoffunterstützte Kaltrissbildung in Schweißnähten hochfester Stahlgüten - Anforderungen an die Prüfung N2 - Die Vortrag gibt einen Überblick, warum Kaltrissprüfung von geschweißten Stählen ständig weiterentwickelt werden muss. Am Beispiel des Implant- und Tekken-Tests werden die Einsatz- u. Anwendungsgrenzen bewertet. Zu berücksichtigen ist, dass beim Schweißen eine äußere mechan. Beanspruchung durch bauteilspezifische Steifigkeitsverhältnisse wirksam ist. Zusätzlich werden weiterführende Prüfverfahren zur Bestimmung der Wasserstoffkonzentration und -diffusion in Schweißnähten vorgestellt, wie die Trägergasheißextraktion (TGHE) für die Ermittlung der Wasserstoffkonzentration (ISO 3690) oder Hochtemperaturdiffusionskoeffizienten. Diese Werte sind für die schweißtechnische Praxis von großer Bedeutung, um Haltezeiten z.B. für das Wasserstoffarmglühen abzuleiten. T2 - Tagung Werkstoffprüfung 2021 CY - Online meeting DA - 02.12.2021 KW - Wasserstoff KW - Kaltrissprüfung KW - Schweißen KW - Stahl KW - Hochfest PY - 2021 AN - OPUS4-53902 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Mente, Tobias T1 - Zuverlässige Wasserstoff Bestimmung in Metallen und ihren Schweißverbindungen: Parameter, Einflüsse, Grenzen N2 - Im Zuge der wasserstoffbasierten Energiewirtschaft von morgen, kommt der Errichtung der dementsprechenden Infrastruktur die zentrale Rolle zu. Der überwiegende Teil bisher eingesetzter und meist geschweißter Werkstoffe, wie Stähle, kann unter bestimmten Bedingungen zur Wasserstoffversprödung neigen. Dies umfasst die klassische verzögerte Kaltrissbildung während der Schweißverarbeitung als auch Versprödungsphänomene während des Betriebs. Für die Bewertung eines jeden Wasserstoffeffektes auf bspw. die mechanischen Eigenschaften eines geschweißten metallischen Werkstoffes, muss der Wasserstoffgehalt präzise bestimmt werden, Im Fall von Schweißnähten ist die beispielsweise nach der ISO 3690, die klassische isotherme Trägergas-Heißextraktion (TGHE). Die TGHE basiert dabei auf der beschleunigten Wasserstoffentgasung aufgrund der thermischen Aktivierung des Wasserstoffs bei erhöhten Temperaturen. Neben der reinen Quantifizierung des Wasserstoffs, kann über die thermische Desorptionsanalyse (TDA) mit variierten Heizraten, der Bindungszustand an mikrostrukturellen Defekten im Material festgestellt und bewertet werden. Für beide Techniken sind experimentelle und messtechnische Einflüsse zu beachten, die großen Effekt auf das Ergebnis haben. Für die TGHE schlägt die ISO 3690 schlägt beispielswiese verschiedene Probengeometrien sowie Mindestextraktionszeiten vor. Die vorliegende Studie fasst Ergebnisse und Erfahrungen zahlreicher Untersuchungen an der Bundesanstalt für Materialforschung und -prüfung (BAM) mit unterschiedlichen Probentemperaturen und Geometrien (ISO 3690 Typ B und zylindrische TDA-Proben) zusammen hinsichtlich: Einfluss der Probenoberfläche (poliert/geschweißt), Messgenauigkeiten in Abhängigkeit des Probenvolumens sowie die unzureichende Überwachung des Effektes des PI-Reglers auf die Extraktionstemperatur. Insbesondere eine abweichende Extraktionstemperatur zur eingestellten Temperatur, kann die Messergebnisse wesentlich verfälschen. Basierend auf den Ergebnissen werden Methoden aufgezeigt, um schnell die gewünschte Extraktionstemperatur zu erreichen, ohne physisch in das Messequipment eingreifen zu müssen. Dies dient der wesentlichen Verbesserung der Zuverlässigkeit der Wasserstoffmessung durch erhöhte Signalstabilität und beschleunigte Wasserstoffdesorption. Im Allgemeinen ist eine unabhängige Temperaturmessung mit Dummy-Proben für die gewählte Heizprozedur angeraten, um mögliche unerwünschte Temperatureinflüsse bereits vor der Messung auszuschließen. Die beschriebenen Methoden können ohne großen Aufwand direkt in die industrielle Anwendung überführt werden. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Wasserstoff KW - Schweißen KW - Forschung KW - ISO 3690 PY - 2023 SN - 978-3-96144-230-0 VL - 389 SP - 435 EP - 442 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-58309 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Zuverlässige Wasserstoffbestimmung in Metallen und ihren Schweißverbindungen: Parameter, Einflüsse, Grenzen N2 - Im Zuge der wasserstoffbasierten Energiewirtschaft von morgen, kommt der Errichtung der dementsprechenden Infrastruktur die zentrale Rolle zu. Der überwiegende Teil bisher eingesetzter und meist geschweißter Werkstoffe, wie Stähle, kann unter bestimmten Bedingungen zur Wasserstoffversprödung neigen. Dies umfasst die klassische verzögerte Kaltrissbildung während der Schweißverarbeitung als auch Versprödungsphänomene während des Betriebs. Für die Bewertung eines jeden Wasserstoffeffektes auf bspw. die mechanischen Eigenschaften eines geschweißten metallischen Werkstoffes, muss der Wasserstoffgehalt präzise bestimmt werden, Im Fall von Schweißnähten ist die beispielsweise nach der ISO 3690, die klassische isotherme Trägergas-Heißextraktion (TGHE). Die TGHE basiert dabei auf der beschleunigten Wasserstoffentgasung aufgrund der thermischen Aktivierung des Wasserstoffs bei erhöhten Temperaturen. Neben der reinen Quantifizierung des Wasserstoffs, kann über die thermische Desorptionsanalyse (TDA) mit variierten Heizraten, der Bindungszustand an mikrostrukturellen Defekten im Material festgestellt und bewertet werden. Für beide Techniken sind experimentelle und messtechnische Einflüsse zu beachten, die großen Effekt auf das Ergebnis haben. Für die TGHE schlägt die ISO 3690 schlägt beispielswiese verschiedene Probengeometrien sowie Mindestextraktionszeiten vor. Die vorliegende Studie fasst Ergebnisse und Erfahrungen zahlreicher Untersuchungen an der Bundesanstalt für Materialforschung und -prüfung (BAM) mit unterschiedlichen Probentemperaturen und Geometrien (ISO 3690 Typ B und zylindrische TDA-Proben) zusammen hinsichtlich: Einfluss der Probenoberfläche (poliert/geschweißt), Messgenauigkeiten in Abhängigkeit des Probenvolumens sowie die unzureichende Überwachung des Effektes des PI-Reglers auf die Extraktionstemperatur. Insbesondere eine abweichende Extraktionstemperatur zur eingestellten Temperatur, kann die Messergebnisse wesentlich verfälschen. Basierend auf den Ergebnissen werden Methoden aufgezeigt, um schnell die gewünschte Extraktionstemperatur zu erreichen, ohne physisch in das Messequipment eingreifen zu müssen. Dies dient der wesentlichen Verbesserung der Zuverlässigkeit der Wasserstoffmessung durch erhöhte Signalstabilität und beschleunigte Wasserstoffdesorption. Im Allgemeinen ist eine unabhängige Temperaturmessung mit Dummy-Proben für die gewählte Heizprozedur angeraten, um mögliche unerwünschte Temperatureinflüsse bereits vor der Messung auszuschließen. Die beschriebenen Methoden können ohne großen Aufwand direkt in die industrielle Anwendung überführt werden. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Wasserstoff KW - Messung KW - Trägergasheißextraktion KW - ISO 3690 KW - Schweißverbindung PY - 2023 AN - OPUS4-58307 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -