TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Steppan, Enrico A1 - Steger, Joerg A1 - Kannengießer, Thomas T1 - Hydrogen trapping in T24 steel weld joints - microstructure influence vs. experimental design effect on activation energy for diffusion N2 - In general, hydrogen assisted cracking is a result of a critical combination of local microstructure, mechanical load and hydrogen concentration. In that connection, welded microstructures of low-alloyed creep-resistant steels can show different hydrogen trapping kinetics. That influences the adsorbed hydrogen concentration as well as the diffusion itself in terms of moderate or strong trapping. A common approach to describe trapping is by the activation energy that is necessary to release hydrogen from a specific trap site. In the present study, T24 base material and weld metal were investigated. For that purpose, electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis(TDA) with linear heating using a mass spectrometer. The results showed a microstructure effect on hydrogen trapping kinetics at elevated temperatures. Additionally, it is necessary to monitor the specimen temperature. A comparison between idealized temperature profile and real specimen temperature showed that the calculated activation energy varied up to a factor of two. Thus, the assigned trap character(moderate or strong) changed. In case of high temperature peaks, this effect could be more important compared to the microstructure effect itself. T2 - 70th IIW Annual Assembly, Commission II-A CY - Shanghai, People's Republic of China DA - 25.06.2017 KW - Creep resisting materials KW - Welding KW - Hydrogen diffusion KW - Thermal desorption analysis KW - Microstructure KW - Experimental design PY - 2017 AN - OPUS4-40954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Rhode, Michael A1 - Launert, B. A1 - Dixneit, Jonny A1 - Kannengießer, Thomas A1 - Pasternak, H. ED - Olden, T.-M. ED - Muransky, O. ED - Edwards, L. T1 - Combining sectioning method and X-ray diffraction for evaluation of residual stresses in welded high strength steel components T2 - Residual Stresses 2016: ICRS-10 N2 - Residual stresses and distortions in welded I-girders for steel construction are relevant when evaluating the stability of steel beams and column members. The application of high strength steels allows smaller wall thicknesses compared to conventional steels. Therefore, the risk of buckling has to be considered carefully. Due to the lack of knowledge concerning the residual stresses present after welding in high strength steel components conservative assumptions of their level and distribution is typically applied. In this study I-girders made of steels showing strengths of 355 MPa and 690 MPa were welded with varying heat input. Due to the dimension of the I-girders and the complex geometry the accessibility for residual stress measurement using X-ray diffraction was limited. Therefore, saw cutting accompanied by strain gauge measurement has been used to produce smaller sections appropriate to apply X-ray diffraction. The stress relaxation measured by strain gauges has been added to residual stresses determined by X-ray diffraction to obtain the original stress level and distribution before sectioning. The combination of both techniques can produce robust residual stress values. From practical point of view afford for strain gauge application can be limited to a number of measuring positions solely to record the global amount of stress relaxation. X-ray diffraction can be applied after sectioning to determine the residual stresses with sufficient spatial resolution. T2 - ICRS 2016 - 10th International Conference on Residual Stresses CY - Sydney, Australia DA - 03.07.2016 KW - Welding KW - Residual Stress KW - Sectioning Method KW - X-Ray Diffraction KW - Component Testing PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-389206 SN - 978-1-94529117-3 SN - 978-1-94529117-6 DO - https://doi.org/10.21741/9781945291173-28 SN - 2474-395X VL - 2 SP - 163 EP - 168 PB - Materials Research Forum LLC CY - Millersville (PA), USA AN - OPUS4-38920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -