TY - JOUR A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Rhode, Michael A1 - Kannengiesser, Thomas A1 - Kromm, Arne T1 - In-service and repair welding of pressurized hydrogen pipelines–a review on current challenges and strategies N2 - Hydrogen is the energy carrier for a sustainable future without fossil fuels. As this requires a reliable transportation infrastructure, the conversion of existing natural gas (NG) grids is an essential part of the worldwide individual national hydrogen strategies, in addition to newly erected pipelines. In view of the known effect of hydrogen embrittlement, the compatibility of the materials already in use (typically low-alloy steels in a wide range of strengths and thicknesses) must be investigated. Initial comprehensive studies on the hydrogen compatibility of pipeline materials indicate that these materials can be used to a certain extent. Nevertheless, the material compatibility for hydrogen service is currently of great importance. However, pipelines require frequent maintenance and repair work. In some cases, it is necessary to carry out welding work on pipelines while they are under pressure, e.g., the well-known tapping of NG grids. This in-service welding brings additional challenges for hydrogen operations in terms of additional hydrogen absorption during welding and material compatibility. The challenge can be roughly divided into two parts: (1) the possible austenitization of the inner piping material exposed to hydrogen, which can lead to additional hydrogen absorption, and (2) the welding itself causes an increased temperature range. Both lead to a significantly increased hydrogen solubility in the respective materials compared to room temperature. In that connection, the knowledge on hot tapping on hydrogen pipelines is rare so far due to the missing service experiences. Fundamental experimental investigations are required to investigate the possible transferability of the state-of-the-art concepts from NG to hydrogen pipeline grids. This is necessary to ensure that no critical material degradation occurs due to the potentially increased hydrogen uptake. For this reason, the paper introduces the state of the art in pipeline hot tapping, encompassing current research projects and their individual solution strategies for the problems that may arise for future hydrogen service. Methods of material testing, their limitations, and possible solutions will be presented and discussed. KW - In-service KW - Welding KW - Hydrogen pipeline KW - Review PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638847 DO - https://doi.org/10.1007/s40194-025-02127-x SN - 0043-2288 SP - 1 EP - 24 PB - Springer Science and Business Media LLC AN - OPUS4-63884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Brackrock, Daniel A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Component test for the assessment of delayed hydrogen-assisted cracking in thick-walled SAW joints for offshore applications N2 - Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods, or jackets. These components are typically constructed using submerged arc welding (SAW) with high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen-assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicates the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam/layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled with over 20 passes and a seam length of 1000 mm. Additional welded stiffeners simulated the effect of a high restraint, to achieve critical HAC conditions. The necessity of a minimum waiting time (MWT) before the NDT can be conducted (to exclude HAC) was critically verified by the application of ultrasonic testing of the welded joint at different time-steps of the NDT of up to 48 h after the completion welding. The residual stresses were determined by a robot XRD goniometer. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modeling allowed the qualitative estimation of the hydrogen diffusion in the weld. No noticeable HAC occurrence was identified and confirms the high cracking resistance of the investigated material. Finally, the applicability of the MWT concept should be critically discussed. KW - Hydrogen KW - Cold cracking KW - Minimum Waiting Time KW - Offshore steel grade KW - Component test PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591981 DO - https://doi.org/10.1007/s40194-023-01658-5 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-59198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Kadoke, Daniel A1 - Kruse, Julius T1 - Local strain behaviour in cross weld tensile specimens of microalloyed high strength steels using digital image correlation N2 - This study specifically examines the role of the microalloying element titanium (Ti) in achieving the desired mechanical properties of quenched and tempered high-strength fine-grain structural steels, with a nominal yield strength of ≥ 690 MPa. Current specifications limit chemical composition only by defining upper thresholds, but even minor variations in Ti content can substantially alter mechanical properties. Consequently, accurate prediction of weldability and welded joint integrity becomes challenging, as variations in Ti lead to distinct microstructural characteristics, potentially causing undesirable softening or hardening effects in the heat-affected zone (HAZ). To address these complexities, two distinct titanium concentrations were systematically investigated for the first time using specially developed laboratory-cast alloys. Both alloying configurations were based on the standard S690QL grade, with consistent chemical composition and heat treatment parameters maintained across the samples. For the weldability analysis, three-layer welds were executed using gas metal arc welding (GMAW), allowing for the identification of critical microstructural zones within the HAZ that exhibit significant softening or hardening. The influence of the softened HAZ region on failure mechanisms was assessed through transverse tensile tests. Digital image correlation (DIC) was employed to capture local strain variations across different HAZ regions in situ. With a custom-developed mirror system, local strains in microstructural zones on both the top and bottom surfaces of the weld were recorded simultaneously. This setup enabled a detailed analysis of how weld seam geometry (e.g., V-groove configuration) influences strain gradients. Additionally, the investigation of localized deformation provided insights into how variations in Ti content within the HAZ affect global strain, fracture constriction, fracture location, and overall fracture behavior. T2 - MPA Seminar 2024 Materials Processes Applications CY - Stuttgart, Germany DA - 08.10.2024 KW - HAZ-Softening KW - Digital Image Correlation KW - Cross weld tensile test PY - 2024 AN - OPUS4-61488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Rhode, Michael A1 - Kannengiesser, Thomas A1 - Kromm, Arne T1 - In-service and repair welding of pressurized hydrogen pipelines–a review on current challenges and strategies N2 - Hydrogen is the energy carrier for a sustainable future without fossil fuels. As this requires a reliable transportation infrastructure, the conversion of existing natural gas (NG) grids is an essential part of the worldwide individual national hydrogen strategies, in addition to newly erected pipelines. In view of the known effect of hydrogen embrittlement, the compatibility of the materials already in use (typically low-alloy steels in a wide range of strengths and thicknesses) must be investigated. Initial comprehensive studies on the hydrogen compatibility of pipeline materials indicate that these materials can be used to a certain extent. Nevertheless, the material compatibility for hydrogen service is currently of great importance. However, pipelines require frequent maintenance and repair work. In some cases, it is necessary to carry out welding work on pipelines while they are under pressure, e.g., the well-known tapping of NG grids. This in-service welding brings additional challenges for hydrogen operations in terms of additional hydrogen absorption during welding and material compatibility. The challenge can be roughly divided into two parts: (1) the possible austenitization of the inner piping material exposed to hydrogen, which can lead to additional hydrogen absorption, and (2) the welding itself causes an increased temperature range. Both lead to a significantly increased hydrogen solubility in the respective materials compared to room temperature. In that connection, the knowledge on hot tapping on hydrogen pipelines is rare so far due to the missing service experiences. Fundamental experimental investigations are required to investigate the possible transferability of the state-of-the-art concepts from NG to hydrogen pipeline grids. This is necessary to ensure that no critical material degradation occurs due to the potentially increased hydrogen uptake. For this reason, the paper introduces the state of the art in pipeline hot tapping, encompassing current research projects and their individual solution strategies for the problems that may arise for future hydrogen service. Methods of material testing, their limitations, and possible solutions will be presented and discussed. KW - In-service KW - Hydrogen KW - Repair welding KW - Pipeline PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638944 DO - https://doi.org/10.1007/s40194-025-02127-x SN - 0043-2288 SP - 1 EP - 24 PB - Springer Science and Business Media LLC AN - OPUS4-63894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Rhode, Michael A1 - Wimpory, R. C. A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part III - Assessment of residual stresses from small-scale to real component welds N2 - For higher operational temperatures and pressures required in petrochemical plants, the modified 13CrMoV9-10 steel was developed providing high resistance against creep and compressed hydrogen. Extreme care during the welding procedure is necessary for this steel, attributed to low toughness, high strength in as-welded state, and increased susceptibility to stress relief cracking (SRC) during post-weld heat treatment (PWHT). Previous research of SRC in creep-resistant steels discussed mainly thermal and metallurgical factors. Few previous findings addressed the influences of welding procedure on crack formation during PWHT considering real-life manufacturing conditions. These investigations focus on effects of welding heat control on stresses during welding and subsequent PWHT operations close to realistic restraint and heat dissipation conditions using a special 3D testing facility, which was presented in parts I and II of this contribution. Part III addresses investigations on residual stress evolution affecting crack formation and discusses the transferability of results from large-scale testing to laboratory-scale. Experiments with test set-ups at different scales under diverse rigidity conditions and an assessment of the residual stresses of the weld-specimens using X-ray (surface near) and neutron diffraction analysis (bulk) were performed. This study aims to provide a way of investigating the SRC behaviour considering component-specific residual stresses via small-scale testing concepts instead of expensive weld mock-ups. KW - Welding KW - Creep-resistant steel KW - Residual stresses KW - Post-weld heat treatment KW - Stress relief cracking PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524403 DO - https://doi.org/10.1007/s40194-021-01101-7 SN - 1878-6669 VL - 65 SP - 1671 EP - 1685 PB - Springer CY - Berlin AN - OPUS4-52440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Launert, B. A1 - Rhode, Michael A1 - Kromm, Arne A1 - Pasternak, H. A1 - Kannengießer, Thomas T1 - Measurement and numerical modeling of residual stresses in welded HSLA component-like I-girders N2 - The present contribution shows the residual stress results obtained from experiments with the sectioning method in comparison to global(structural) welding simulation models on component-like (i.e., large scale) I-girders made of structural steel grades S355 and S690QL. Plates were welded by conventional gas metal arc welding using two different heat inputs. In addition, the base material was assumed to be stress-free. Based on these results, conclusions and recommendations for the design of welded I-girders are drawn. T2 - IIW - Annual Assembly 2016 CY - Melbourne, Australia DA - 10.07.2016 KW - Residual Stresses KW - Microalloyed Steels KW - Girders KW - MAG Welding KW - Numerical Simulation PY - 2016 DO - https://doi.org/10.1007/s40194-016-0413-x SN - 1878-6669 SN - 0043-2288 VL - 61 IS - 2 SP - 223 EP - 229 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-38919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Reparaturschweißen zukünftiger, in Betrieb befindlicher Wasserstoffpipelines N2 - Wasserstoff leistet als Energieträger der Zukunft einen entscheidenden Beitrag zur nachhaltigen Energieversorgung, wobei der Transport auf Basis des europäischen Ferngasleitungsnetzes erfolgen wird. Bisherige Untersuchungen zur Werkstoffkompatibilität zeigen, dass die hier verwendeten, niedriglegierten Rohrstähle für Wasserstofftransport unter normalen Betriebsbedingungen (≤ 60 °C, max. 100 bar) grundsätzlich geeignet sind. Die Eignung kann nicht ohne Weiteres übertragen werden, sobald Reparaturschweißungen beispielsweise aufgrund von Wartungsarbeiten an druckführenden, in Betrieb befindlichen, Hochdruckgasleitungen erfolgen. Aus technisch-ökonomischen Gründen werden Schweißarbeiten dabei im Betrieb unter fortwährendem Druck und Gasfluss durchgeführt. Dies soll auch bei Wasserstoffpipelines erfolgen. Dazu im Erdgasnetz angewandte und etablierte Konzepte sind beispielsweise das „Hot-Tapping“ und „Stoppling“. Beim „Hot-Tapping“ wird eine druckführende Pipeline durch Anflanschen eines abgeschlossenen, druckdichten Systems aus Absperrventil und Bohrvorrichtung angebohrt. Dazu müssen sogenannte Überschieber (aus vorgeformten Zylinderhalbschalen) durch Längsnaht verbunden und dann mit Rohrrundnähten am Produktrohr verbunden werden. Für das zum überwiegenden Teil durchgeführte E-Hand-Schweißen sind dabei Vorwärmtemperaturen von ca. 100 °C bzw. 250 °C für die maximale Zwischenlagentemperatur einzuhalten. Besonderer Fokus liegt auf der Betrachtung dünnwandiger Leitungen, da hier beim Schweißen der Rundnähte die Austenitisierungstemperatur an der Innenseite der Pipeline überschritten wird. Dadurch wird eine signifikant höhere Wasserstoffaufnahme in den Leitungsstahl vermutet, mit einer möglichen Degradation der mechanischen Kennwerte bzw. Rissbildung. Durch die langen Schweiß- und Abkühlzeiten wird der Rohrleitungsstahl zudem teilweise stundenlang Temperaturen von bis zu 250 °C ausgesetzt. Neben der klassischen „Versprödung“ muss daher eventuell auch ein sogenannter Hochtemperatur-Wasserstoffangriff betrachtet werden. Diese vorliegende Studie gibt Einblick zur Übertragbarkeit der bekannten Konzepte aus der Erdgastechnik zum Reparaturschweißen. Dazu werden Möglichkeiten und Grenzen momentaner Prüfkonzepte sowie deren Weiterentwicklungen aufgezeigt. Dies umfasst bspw. geeignete Methodiken zur Werkstoffprüfung als auch skalierte Bauteilversuche unter realistischen Druckgas-Betriebsbedingungen einer Pipeline. In diesem Rahmen erfolgt auch die Kurzvorstellung des Kooperationsprojektes von BAM, DVGW und Ferngasnetzbetreibern „H2-SuD“ zum Einfluss der Temperaturführung und Rohrgeometrie auf die Wasserstoffaufnahme. T2 - DVS CONGRESS 2024 CY - Erfurt, Germany DA - 16.09.2024 KW - Reparaturschweißen KW - Pipeline KW - Wasserstoff KW - Im Betrieb PY - 2024 SN - 978-3-96144-269-0 VL - 395 SP - 341 EP - 349 AN - OPUS4-61478 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kromm, Arne A1 - Schröpfer, Dirk A1 - Steger, J. A1 - Kannengießer, Thomas ED - Seefeldt, M. T1 - Residual stress formation in component related stress relief cracking tests of a welded creep-resistant steel N2 - Submerged arc welded (SAW) components of creep-resistant low-alloyed Cr-Mo-V steels are used for thick-walled heavy petrochemical reactors (wall-thickness up to 475 mm) as well as employed in construction of modern high-efficient fossil fired power plants. These large components are accompanied by significant restraints during welding fabrication, especially at positions of different thicknesses like welding of nozzles. As a result, residual stresses occur, playing a domi-nant role concerning so-called stress relief cracking (SRC) typically during post weld heat treat-ment (PWHT). Besides specific metallurgical factors (like secondary hardening due to re-precipitation), high tensile residual stresses are a considerable influence factor on SRC. For the assessment of SRC susceptibility of certain materials mostly mechanical tests are applied which are isolated from the welding process. Conclusions regarding the influence of mechanical factors are rare so far. The present research follows an approach to reproduce loads, which occur during welding of real thick-walled components scaled to laboratory conditions by using tests designed on different measures. A large-scale slit specimen giving a high restraint in 3 dimensions by high stiffness was compared to a medium-scale multi-pass welding U-profile specimen showing a high degree of restraint in longitudinal direction and a small-scale TIG-re-melted specimen. The small-scale specimens were additionally subjected to mechanical bending to induce loads that are found during fabrication on the real-scale in heavy components. Results show for all three cases compa-rable high tensile residual stresses up to yield strength with high gradients in the weld metal and the heat affected zone. Those high tensile stresses can be significant for cracking during further PWHT. T2 - European Conference on Residual Stresses 2018 - ECRS-10 CY - Leuven, Belgium DA - 11.09.2018 KW - Welding KW - Residual stresses KW - Stress Relief Cracking (SRC) KW - Creep-resistant steel KW - Post Weld Heat Treatment (PWHT) PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459683 SN - 978-1-9452-9188-3 SN - 978-1-9452-9189-0 DO - https://doi.org/10.21741/9781945291890-29 SN - 2474-395X SN - 2474-3941 VL - 6 SP - 185 EP - 190 PB - Materials Research Forum LLC CY - Millersville, PA, USA AN - OPUS4-45968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part II - Mechanisms of stress relief cracking during post weld heat treatment N2 - Welding of 13CrMoV9-10 vanadium steel requires care due to an increased susceptibility to stress relief cracking during post weld heat treatment. Previous research into the crack formation in creep-resistant steels has focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the crack formation during post weld heat treatment considering real-life restraint conditions. This work is subdivided in two parts. Part I showed that an increasing heat input during submerged arc welding under restraint led to an increasing stress level in the joint prior to the post weld heat treatment. The magnitude of stress relief cracking observed in the heat-affected zone after the post weld heat treatment is affected by the heat input. In Part II of this work, the cracks and the associated microstructure which occurred under restraint were studied. The application of a Special acoustic emission analysis indicated that the cracks formed in a temperature range between 300 and 500 °C during the post weld heat treatment. The toughness in the heat-affected zone of the restrained welds was affected by the welding heat input. Microstructural analyses of all specimens revealed accelerated aging due to precipitation of carbides during post weld heat treatment under restraint. KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506283 DO - https://doi.org/10.1007/s40194-020-00881-8 SN - 1878-6669 VL - 64 SP - 819 EP - 829 PB - Springer CY - Berlin AN - OPUS4-50628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part I - Effect of heat control on welding stresses and stress relief cracking N2 - The avoidance of failures during the fabrication or operation of petrochemical reactors made of creep-resistant, low-alloy steels as 13CrMoV9-10 requires still research despite over 60 years of international investigations in the field of stress relief cracking. The quality of modern base materials and filler metals leads to the fact that previously known crack causes, such as impurities of S or P, recede into the background. Rather, the causes are increasingly to be found in the fabrication process. Investigations on the influence of heat control on the stresses in welded components and thus on the stress relief cracking sensitivity under realistic manufacturing conditions are not yet available. This work is subdivided in two parts. Part 1 of this study focused on the effect of heat control during submerged arc welding on the stresses. For this purpose, a testing facility was applied, which allows to observe the forces and moments accumulating during welding or heat treatment in a component-like specimen under shrinkage restraint. The stress acting in the specimen increases with higher preheat/interpass temperatures and higher heat input. During the heat treatment, the stresses are relieved. Nevertheless, cracks are formed already during heating. The total crack length correlates with the heat input. KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506271 DO - https://doi.org/10.1007/s40194-020-00875-6 SN - 1878-6669 VL - 64 IS - 5 SP - 807 EP - 817 PB - Springer CY - Berlin AN - OPUS4-50627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -