TY - JOUR A1 - Raute, J. A1 - Jokisch, T. A1 - Marko, A. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Influence of electron beam welding parameters on the weld seam geometry of Inconel718 at low feed rates N2 - Ni-based superalloys are well established in various industrial applications, because of their excellentmechanical properties and corrosion resistance at high temperatures. Despite the high development stage anda common industrial use of these alloys, hot cracking remains a major challenge limiting the weldability ofthe materials. As commonly known, the hot cracking susceptibility during welding increases with the amountof precipitation phases. Hence, a large amount of highstrength Ni-Alloys is rated as non-weldable. A newapproach based on electron beam welding at low feed rates shows great potential for reducing the hotcracking tendency of precipitation-hardened alloys. However, geometry and properties of the weld seamdiffer significantly in comparison to the common process range for practical uses. The aim of this study is toinvestigate the influence of welding parameters on the seam geometry at low feed rates between 1 mm/s and10 mm/s. For this purpose, 25 bead on plate welds on a 12 mm thick sheet made of Inconel 718 are carriedout. First, the relevant parameters are identified by performing a screening. Then the effects discovered arefurther studied by using a central composite design. The results show a significant difference between theanalyzed weld seam geometry in comparison to the well-known appearance of electron beam welded seams. KW - Electron beam welding KW - Ni-based superalloy KW - Inconel 718 KW - Low feed rates KW - Seam geometry KW - Hot crack PY - 2020 DO - https://doi.org/10.3139/120.111614 SN - 0025-5300 VL - 62 IS - 12 SP - 1221 EP - 1227 PB - Carl Hanser Verlag GmbH & Co. KG CY - München AN - OPUS4-52016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Influence of welding parameters on electromagnetic supported degassing of die-casted and wrought aluminum JF - Journal of Laser Applications N2 - Laser beam welding of aluminum die casting is challenging. A large quantity of gases (in particular, hydrogen) is absorbed by aluminum during the die-cast manufacturing process and is contained in the base material in solved or bound form. After remelting by the laser, the gases are released and are present in the melt as pores. Many of these metallurgic pores remain in the weld seam as a result of the high solidification velocities. The natural (Archimedean) buoyancy is not sufficient to remove the pores from the weld pool, leading to process instabilities and poor mechanical properties of the weld. Therefore, an electromagnetic (EM) system is used to apply an additional buoyancy component to the pores. The physical mechanism is based on the generation of Lorentz forces, whereby an electromagnetic pressure is introduced into the weld pool. The EM system exploits the difference in electrical conductivity between poorly conducting pores (inclusions) and the comparatively better conducting aluminum melt to increase the resulting buoyancy velocity of the pores. Within the present study, the electromagnetic supported degassing is investigated in dependence on the laser beam power, welding velocity, and electromagnetic flux density. By means of a design of experiments, a systematic variation of these parameters is carried out for partial penetration laser beam welding of 6mm thick sheets of wrought aluminum alloy AlMg3 and die-cast aluminum alloy AlSi12(Fe), where the wrought alloy serves as a reference. The proportion of pores in the weld seams is determined using x-ray images, computed tomography images, and cross-sectional images. The results prove a significant reduction of the porosity up to 70% for both materials as a function of the magnetic flux density. T2 - ICALEO 2019 CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser beam welding KW - Electromagnetic supported degassing KW - Die-casted aluminum PY - 2020 DO - https://doi.org/10.2351/7.0000064 VL - 32 IS - 2 SP - 022031-1 EP - 022031-8 PB - AIP Publishing AN - OPUS4-50728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Application of a C-ring Geometry to validate the Stress Relief Heat Treatment Simulation of Additive Manufactured Austenitic Stainless Steel Parts via Displacement JF - HTM Journal of Heat Treatment and Materials N2 - Directed energy deposition is a metal additive manufacturing process that builds parts by joining material in a layer-by-layer fashion on a substrate. Those parts are exposed to rapid thermo-cycles which cause steep stress gradients and the layer-upon-layer manufacturing fosters an anisotropic microstructure, therefore stress relief heat treatment is necessary. The numerical simulation can be used to find suitable parameters for the heat treatment and to reduce the necessary efforts to perform an effective stress relieving. Suitable validation Experiments are necessary to verify the results of the numerical simulation. In this paper, a 3D coupled thermo-mechanical model is used to simulate the heat treatment of an additive manufactured component to investigate the application of a C-ring geometry for the distortion-based validation of the numerical simulation. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to quantify the distortion after each process step. KW - Additive manufacturing KW - Directed energy deposition KW - Laser KW - Heat treatment KW - Numerical simulation PY - 2020 DO - https://doi.org/10.3139/105.110417 VL - 75 IS - 4 SP - 248 EP - 259 PB - Carl Hanser Verlag AN - OPUS4-51318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Kantenbeschichtung für das Laserstrahlschweißen dickwandiger Duplexstahl-Bleche JF - Schweißen und Schneiden N2 - Duplexstähle finden in vielen industriellen Bereichen Anwendung, dies ist nicht zuletzt ihren hervorragenden Eigenschaften, wie einer guten Korrosionsbeständigkeit, einer guten Duktilität bei trotzdem hoher Festigkeit, zuzuschreiben. Diese Eigenschaften werden jedoch durch das Schweißen, vor allem das Laserstrahlschweißen, beeinträchtigt, da die hohen Abkühlraten zu erhöhten Ferritanteilen im Schweißgut führen. Mit Hilfe eines zweistufigen Prozesses, bei dem die Kanten der Fügepartner vor dem Schweißen mit nickelhaltigem Pulver beschichtet werden, soll dieses Problem für dickwandige Bleche gelöst werden. In diesem Zusammenhang wurden verschiedene Prozessparameter für den Laser-Pulver-Auftragschweiß-Prozess untersucht sowie die defektfreie Schweißung dieser beschichteten Kanten mit unterschiedlichen Prozessgasen. KW - Pufferschichten KW - Laser-Pulver-Auftragschweißen KW - Laserstrahlschweißen KW - Duplex PY - 2020 VL - 72 IS - 7 SP - 382 EP - 387 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-50145 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bakir, Nasim A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Lamé curve approximation for the assessment of the 3D temperature distribution in keyhole mode welding processes JF - AIP Journal of Laser Applications N2 - A novel approach for the reconstruction of an equivalent volumetric heat source from a known weld pool shape is proposed. It is based on previously obtained weld pool geometries from a steady-state thermo-fluid dynamics simulation. Hereby, the weld pool dimensions are obtained under consideration of the most crucial physical phenomena, such as phase transformations, thermo-capillary convection, natural convection, and temperature-dependent material properties. The algorithm provides a time and calibration efficient way for the reproduction of the weld pool shape by local Lamé curves. By adjusting their parameters, the identification of the finite elements located within the weld pool is enabled. The heat input due to the equivalent heat source is assured by replacing the detected nodes’ temperature by the melting temperature. The model offers variable parameters making it flexible and adaptable for a wide range of workpiece thicknesses and materials and allows for the investigation of transient thermal effects, e.g., the cooling stage of the workpiece. The calculation times remain acceptably short especially when compared to a fully coupled process simulation. The computational results are in good agreement with performed complete-penetration laser beam welding experiments. KW - Lamé curves approximation KW - Equivalent heat source KW - Thermal cycles KW - Numerical modeling KW - Keyhole mode welding PY - 2020 DO - https://doi.org/10.2351/7.0000076 VL - 32 IS - 2 SP - 022042-1 EP - 022042-8 PB - AIP Publishing AN - OPUS4-50768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool JF - AIP Journal of Laser Applications N2 - The geometrical characteristics of the weld end crater are commonly used as a means of validating numerical results in welding simulations. In this paper, an analytical model is developed for calculating the cooling stage of the welding process after the moving energy source is turned off. Solutions for various combinations of heat sources and heated bodies are found. It is shown that after turning off the Energy source, additional melting of the base material in the longitudinal direction may occur due to the overheated liquid metal. The developed technique is applied to complete-penetration keyhole laser beam welding of 2 mm thick austenitic stainless-steel plate 316L at a Welding speed of 20 mm/s and a laser power of 2.3 kW. The results show a theoretical increase in the weld end crater length of up to 19% compared to the length of the steady-state weld pool. It is found that at the moment of switch off, the weld end crater center, where solidification of the liquid metal ends, is shifted from the heat source axis toward the weld pool tail. The solidification rate and the direction of crystallization of the molten material during the welding process and those in the weld end crater differ significantly. A good agreement between the computational results and the welding experiments is achieved. KW - Weld end crater KW - Steady-state weld pool KW - Mathematical modeling KW - Solidification KW - Laser beam welding PY - 2020 DO - https://doi.org/10.2351/7.0000068 VL - 32 IS - 2 SP - 022024-1 EP - 022024-6 PB - AIP Publishing AN - OPUS4-50767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Neueste Entwicklungen im Bereich des Hochleistungslaserstrahl- und Hybridschweißens von hohen Blechdicken JF - Schiff und Hafen Seewirtschaft N2 - Bislang kommt das Laserstrahlschweißen bzw. Laserhybridschweißen hauptsächlich bei Dickblechen mit einer Wandstärke von bis zu 15 mm zum Einsatz. Für Anwendungen über 20 mm war dieses Verfahren aufgrund einiger Herausforderungen bisher nur bedingt realisierbar. Eine von der Bundesanstalt für Materialforschung und -prüfung (BAM) entwickelte elektromagnetische Schmelzbadunterstützung ermöglicht nun ein einlagiges Schweißen von bis zu 30 mm Wandstärke. KW - Laserstrahlschweißen KW - Laserhybridschweißen KW - Modellierung KW - Elektromagnetische Schmelzbadunterstützung KW - Kaltzähe Stähle PY - 2020 VL - 2 SP - 26 EP - 30 PB - DVV Media Group GmbH CY - Hamburg AN - OPUS4-51632 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Krieger, S. A1 - Gumenyuk, Andrey A1 - El-Batahgy, A. M. A1 - Rethmeier, Michael T1 - Notch impact toughness of laser beam welded thick sheets of cryogenic nickel alloyed steel X8Ni9 JF - Procedia CIRP N2 - The paper deals with the investigations of the impact toughness of laser beam welded 14.5 mm thick sheets made of cryogenic steel X8Ni9 as a function of preheating. This 9% nickel alloyed steel is widely used in the liquefied natural gas (LNG) industry. An application of highly efficient welding processes such as high-power laser beam welding (LBW) in LNG sector requires an understanding of the interactions between the LBW process parameters and weld properties, in particular the impact toughness. The results show that the original fine-grained martensitic microstructure of the base metal (BM) is significantly changed by melting and crystallization during the LBW, what can lead to a decrease in the impact toughness of the weld metal (WM) below the required level. An optimal preheating temperature range leads to the favorable thermal welding cycle and is of remarkable importance for maintaining the notch impact toughness of laser beam welded joints of these thick steel sheets. A parameter window was identified in which V-notch impact toughness comparable to that of the BM at -196 °C was achieved. KW - Cryogenic steel KW - Laser beam welding KW - Preheating KW - Welding thermal cycle KW - Microstructure KW - Hardness KW - V-notch impact toughness PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513250 DO - https://doi.org/10.1016/j.procir.2020.09.095 VL - 94 SP - 627 EP - 631 PB - Elsevier B.V. AN - OPUS4-51325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study of additional element transport in wire feed laser beam welding JF - Procedia CIRP N2 - The transport phenomena in the wire feed laser beam welding are investigated numerically. A three-dimensional transient heat transfer and fluid flow model coupled with free surface tracing and element transport is developed. A ray-tracing method with local grid refinement algorithm is used to calculate the multiple reflections and Fresnel absorption on the keyhole wall. The filler material flows backward along the lateral side of the weld pool, and subsequently flows forward along the longitudinal plane. The occurrence of the bulging phenomenon may further prevent the downward transfer of the additional elements to the root of the weld pool. KW - Laser beam welding KW - Element transport KW - Filler wire KW - Numerical modelling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513271 DO - https://doi.org/10.1016/j.procir.2020.09.129 VL - 94 SP - 722 EP - 725 PB - Elsevier B.V. AN - OPUS4-51327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Numerische Simulation im 3D-Druck JF - Stahl und Eisen N2 - Die numerische Simulation hilft, Probleme bei additiven Bauprozessen früh zu erkennen und Optimierungspotentiale auszuschöpfen. Ziel ist, im additiven Auftragschweißen (DED) die Zahl der nötigen Versuche durch Vorhersagen zu verringern und Prozessgrößen zu visualisieren. Eine besondere Anwendung der Simulation ist die Generierung verzugskompensierter Geometrien: Durch die Berechnung des Bauteilverzugs kann die Geometrie vor dem Bauen so verändert werden, dass sie mit Verzug die gewünschte Toleranz erreicht. So kann Zerspanvolumen und Aufmaß reduziert werden. KW - Schweißsimulation KW - FEM KW - Auftragschweißen KW - Additive Fertigung KW - Verzug PY - 2020 IS - 4 SP - 45 EP - 48 AN - OPUS4-51097 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Karkhin, V. A1 - Rethmeier, Michael T1 - On the relationship between the bulge effect and the hot cracking formation during deep penetration laser beam welding JF - Procedia CIRP N2 - Recent studies have confirmed the widening of the weld pool interface, known as a bulge effect, during deep penetration high power laser beam welding. The link between such geometric particularities of the weld pool shape and the hot cracking phenomena is significant. The present work seeks to extend the level of understanding by investigating their relationship. A coupled multiphysics, multiscale numerical framework is developed, comprising a series of subsequent analyses. The study examines the influences of the bulge on the three most dominant effects causing hot cracking, namely the thermal cycles, the mechanical loading, and the local microstructure. The bulge in the weld pool shape forms approximately in the middle of the plate, thus correlating with the location of hot cracking. It increases the hot cracking susceptibility by enhancing the three dominant effects. The numerical results are backed up by experimental data. T2 - 11th CIRP Conference on Photonic Technologies [LANE 2020] KW - Hot cracking KW - Bulge effect KW - Numerical modelling KW - Laser beam welding KW - Deep penetration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512783 DO - https://doi.org/10.1016/j.procir.2020.09.002 SN - 2212-8271 VL - 94 SP - 5 EP - 10 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-51278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Javaheri, E. A1 - Kumala, V. A1 - Javaheri, A. A1 - Rawassizadeh, R. A1 - Lubritz, J. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Quantifying Mechanical Properties of Automotive Steels with Deep Learing Based Computer Vision Algorithms JF - Metals N2 - This paper demonstrates that the instrumented indentation test (IIT), together with a trained artificial neural network (ANN), has the capability to characterize the mechanical properties of the local parts of a welded steel structure such as a weld nugget or heat affected zone. Aside from force-indentation depth curves generated from the IIT, the profile of the indented surface deformed after the indentation test also has a strong correlation with the materials’ plastic behavior. The profile of the indented surface was used as the training dataset to design an ANN to determine the material parameters of the welded zones. The deformation of the indented surface in three dimensions shown in images were analyzed with the computer vision algorithms and the obtained data were employed to train the ANN for the characterization of the mechanical properties. Moreover, this method was applied to the images taken with a simple light microscope from the surface of a specimen. Therefore, it is possible to quantify the mechanical properties of the automotive steels with the four independent methods: (1) force-indentation depth curve; (2) profile of the indented surface; (3) analyzing of the 3D-measurement image; and (4) evaluation of the images taken by a simple light microscope. The results show that there is a very good Agreement between the material parameters obtained from the trained ANN and the experimental uniaxial tensile test. The results present that the mechanical properties of an unknown steel can be determined by only analyzing the images taken from its surface after pushing a simple indenter into its surface. KW - Deep learning KW - Computer vision KW - Artificial neural network KW - Clustering KW - Mechanical properties KW - High strength steels KW - Instumented indentation test PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503038 DO - https://doi.org/10.3390/met10020163 VL - 10 IS - 2 SP - 163 PB - MDPI AN - OPUS4-50303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A. A1 - Saiyah, A. A1 - Khafagi, S. A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - Shielded metal arc welding of 9%Ni steel using matching ferritic filler metal JF - Science and Technology of Welding and joining N2 - Motivated by the tensile strength loss of 9%Ni steel arc welded joints made using Ni-based austenitic filler metals, the feasibility of maintaining the tensile strength using matching ferritic filler metal has been demonstrated. In comparison with shielded metal arc welded joint made using Ni-based austenitic electrode ENiCrMo-6, higher tensile strength comparable to that of the base metal was obtained using matching ferritic electrode. Besides, sufficient impact toughness energies with much lower mismatch were obtained for weld metal and heat-affected zone. Welded joint with a lower mechanical mismatching is of considerable importance for achieving acceptable combination of tensile strength and impact toughness.Abetter combination of These mechanical properties is ensured by applying a post weld heat treatment. KW - Mechanical mismatching KW - Mechanical properties KW - Microstructure KW - Austenitic welding electrode KW - Matching ferritic welding electrode PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1846936 SN - 1362-1718 SP - 1 EP - 7 PB - Taylor & Francis AN - OPUS4-51835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A. A1 - Saiyah, A. A1 - Khafagi, S. A1 - Gumenyuk, Andrey A1 - Gook, Sergej A1 - Rethmeier, Michael T1 - Shielded metal arc welding of 9%Ni steel using matching ferritic filler metal JF - Science and Technology of Welding and Joining N2 - Motivated by the tensile strength loss of 9%Ni steel arc welded joints made using Ni-based austenitic filler metals, the feasibility of maintaining the tensile strength using matching ferritic filler metal has been demonstrated. In comparison with shielded metal arc welded joint made using Ni-based austenitic electrode ENiCrMo-6, higher tensile strength comparable to that of the base metal was obtained using matching ferritic electrode. Besides, sufficient impact toughness energies with much lower mismatch were obtained for weld metal and heat-affected zone. Welded joint with a lower mechanical mismatching is of considerable importance for achieving acceptable combination of tensile strength and impact toughness. A better combination of These mechanical properties is ensured by applying a post weld heat treatment. KW - 9%Ni steel KW - Ni-based austenitic welding electrode KW - Matching ferritic welding electrode KW - Mechanical properties KW - Mechanical mismatching KW - Microstructure KW - SMAW PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1846936 VL - 26 IS - 2 SP - 116 EP - 122 PB - Taylor & Francis AN - OPUS4-52025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding JF - Journal of Laser Applications N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly nonlinear and multicoupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modeling. A 3D transient multiphysical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics, and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph, and the element distribution from the energy dispersive x-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2020 DO - https://doi.org/10.2351/7.0000069 VL - 32 IS - 2 SP - 022026-1 EP - 022026-9 AN - OPUS4-50874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, Victor A1 - Bachmann, Marcel A1 - Khomich, Pavel A1 - Rethmeier, Michael T1 - МОДЕЛИРОВАНИЕ ГИДРОДИНАМИЧЕСКИХ И ТЕПЛОВЫХ ПРОЦЕССОВ ПРИ ЛАЗЕРНОЙ СВАРКЕ СО СКВОЗНЫМ ПРОПЛАВЛЕНИЕМ JF - СВАРОЧНОЕ ПРОИЗВОДСТВО N2 - Разработана модель физических процессов при сварке плавлением на основе концепции эквивалентных источников теплоты. Модель включает в себя две части: термогидродинамику сварочной ванны и теплопроводность свариваемого тела вне ванны. В задаче термогидродинамики учитываются температурные зависимости свойств материала, форма парогазового канала, термокапиллярная и естественная конвекция, фазовые превращения и другие физические явления.Приведено решение задачи термогидродинамики методом конечных элементов на примере сварки стальной пластины толщиной 15 мм со сквозным проплавлением лазерным лучом (по технологии "замочная скважина"). Показано, что термокапиллярная конвекция жидкого металла является основной причиной сложной выпукло-вогнутой формы границы ванны с увеличенными размерами в приповерхностных областях. Получено удовлетворительное совпадение расчетных и экспериментальных размеров сварочной ванны. KW - ЛАЗЕРНАЯ СВАРКА KW - СВАРОЧНАЯ ВАННА KW - ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ KW - ГИДРОДИНАМИКА KW - КОНВЕКЦИЯ KW - ТЕПЛОПРОВОДНОСТЬ KW - ТЕМПЕРАТУРНОЕ ПОЛЕ KW - МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ PY - 2020 SN - 0491-6441 SP - 58 EP - 69 AN - OPUS4-50290 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -