TY - JOUR A1 - El-Batahgy, A. A1 - Saiyah, A. A1 - Khafagi, S. A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - Shielded metal arc welding of 9%Ni steel using matching ferritic filler metal JF - Science and Technology of Welding and joining N2 - Motivated by the tensile strength loss of 9%Ni steel arc welded joints made using Ni-based austenitic filler metals, the feasibility of maintaining the tensile strength using matching ferritic filler metal has been demonstrated. In comparison with shielded metal arc welded joint made using Ni-based austenitic electrode ENiCrMo-6, higher tensile strength comparable to that of the base metal was obtained using matching ferritic electrode. Besides, sufficient impact toughness energies with much lower mismatch were obtained for weld metal and heat-affected zone. Welded joint with a lower mechanical mismatching is of considerable importance for achieving acceptable combination of tensile strength and impact toughness.Abetter combination of These mechanical properties is ensured by applying a post weld heat treatment. KW - Mechanical mismatching KW - Mechanical properties KW - Microstructure KW - Austenitic welding electrode KW - Matching ferritic welding electrode PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1846936 SN - 1362-1718 SP - 1 EP - 7 PB - Taylor & Francis AN - OPUS4-51835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A. A1 - Saiyah, A. A1 - Khafagi, S. A1 - Gumenyuk, Andrey A1 - Gook, Sergej A1 - Rethmeier, Michael T1 - Shielded metal arc welding of 9%Ni steel using matching ferritic filler metal JF - Science and Technology of Welding and Joining N2 - Motivated by the tensile strength loss of 9%Ni steel arc welded joints made using Ni-based austenitic filler metals, the feasibility of maintaining the tensile strength using matching ferritic filler metal has been demonstrated. In comparison with shielded metal arc welded joint made using Ni-based austenitic electrode ENiCrMo-6, higher tensile strength comparable to that of the base metal was obtained using matching ferritic electrode. Besides, sufficient impact toughness energies with much lower mismatch were obtained for weld metal and heat-affected zone. Welded joint with a lower mechanical mismatching is of considerable importance for achieving acceptable combination of tensile strength and impact toughness. A better combination of These mechanical properties is ensured by applying a post weld heat treatment. KW - 9%Ni steel KW - Ni-based austenitic welding electrode KW - Matching ferritic welding electrode KW - Mechanical properties KW - Mechanical mismatching KW - Microstructure KW - SMAW PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1846936 VL - 26 IS - 2 SP - 116 EP - 122 PB - Taylor & Francis AN - OPUS4-52025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fu, B. A1 - Shen, J. A1 - Suhuddin, U. A1 - Pereira, A. A1 - Maawad, E. A1 - dos Santos, J. A1 - Klusemann, B. A1 - Rethmeier, Michael T1 - Revealing joining mechanism in refill friction stir spot welding of AZ31 magnesium alloy to galvanized DP600 steel JF - Materials & Design N2 - The application of magnesium (Mg) inevitably involves dissimilar welding with steel. A novel solid state spot welding method, refill friction stir spot welding (refill FSSW), was utilized to weld AZ31 Mg alloy to galvanized DP600 steel. Although Mg/Fe is an immiscible alloy system, defect-free welds with high strength were successfully obtained in a wide parameter window. The results of microstructure, interfacial reactions, and mechanical properties are reported to reveal the underlying joining mechanism. Due to the melting of Zn coating and subsequent Mg-Zn reactions, Mg-Zn eutectic and intermetallic compounds were detected within welds. Heterogeneous interfacial reactions occur along Mg/steel interface, and the relationship between interfacial structure and fracture behavior was investigated. The joining mechanism is associated with Zn coating and Fe-Al layer: 1) the presence of Zn coating is beneficial for achieving high-quality welding between Mg and steel, it protects the interface from oxidation and contributes to brazing of the weld; 2) the Al present in Mg alloy reacts with Fe, resulting in the growth of Fe-Al layer, which contributes to the diffusion bonding in the interface. The overall results clearly show that Refill FSSW is a competitive welding method for joining Mg and galvanized steel. KW - Refill friction stir spot welding KW - Multi-materials joining KW - Magnesium alloy KW - Galvanized steel KW - Mechanical properties KW - Microstructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536878 DO - https://doi.org/10.1016/j.matdes.2021.109997 SN - 0264-1275 VL - 209 SP - 109997 PB - Elsevier Ltd. AN - OPUS4-53687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A. A1 - Elkousy, M. A1 - Al-Rahman, A. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Gook, S. T1 - Retaining Mechanical Properties of GMA-Welded Joints of 9%Ni Steel Using Experimentally Produced Matching Ferritic Filler Metal JF - materials N2 - Motivated by the loss of tensile strength in 9%Ni steel arc-welded joints performed using commercially available Ni-based austenitic filler metals, the viability of retaining tensile strength using an experimentally produced matching ferritic filler metal was confirmed. Compared to the austenitic Ni-based filler metal (685 MPa), higher tensile strength in gas metal arc (GMA) welded joints was achieved using a ferritic filler metal (749 MPa) due to its microstructure being similar to the base metal (645 MPa). The microstructure of hard martensite resulted in an impact energy of 71 J (-196 °C), which was two times higher than the specified minimum value of _>34 J. The tensile and impact strength of the welded joint is affected not only by its microstructure, but also by the degree of its mechanical mismatch depending on the type of filler metal. Welds with a harder microstructure and less mechanical mismatch are important for achieving an adequate combination of tensile strength and notched impact strength. This is achievable with the cost-effective ferritic filler metal. A more desirable combination of mechanical properties is guaranteed by applying low preheating temperature (200 °C), which is a more practicable and economical solution compared to the high post-weld heat treatment (PWHT) temperature (580 °C) suggested by other research. KW - 9%Ni steel KW - Ni-based austenitic filler metal KW - Mechanical mismatching KW - Microstructure KW - Post-weld heat treatment KW - Preheating KW - Matching ferritic filler metal PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564610 DO - https://doi.org/10.3390/ma15238538 SN - 1996-1944 VL - 15 IS - 23 SP - 1 EP - 14 PB - MDPI AN - OPUS4-56461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Krieger, S. A1 - Gumenyuk, Andrey A1 - El-Batahgy, A. M. A1 - Rethmeier, Michael T1 - Notch impact toughness of laser beam welded thick sheets of cryogenic nickel alloyed steel X8Ni9 JF - Procedia CIRP N2 - The paper deals with the investigations of the impact toughness of laser beam welded 14.5 mm thick sheets made of cryogenic steel X8Ni9 as a function of preheating. This 9% nickel alloyed steel is widely used in the liquefied natural gas (LNG) industry. An application of highly efficient welding processes such as high-power laser beam welding (LBW) in LNG sector requires an understanding of the interactions between the LBW process parameters and weld properties, in particular the impact toughness. The results show that the original fine-grained martensitic microstructure of the base metal (BM) is significantly changed by melting and crystallization during the LBW, what can lead to a decrease in the impact toughness of the weld metal (WM) below the required level. An optimal preheating temperature range leads to the favorable thermal welding cycle and is of remarkable importance for maintaining the notch impact toughness of laser beam welded joints of these thick steel sheets. A parameter window was identified in which V-notch impact toughness comparable to that of the BM at -196 °C was achieved. KW - Cryogenic steel KW - Laser beam welding KW - Preheating KW - Welding thermal cycle KW - Microstructure KW - Hardness KW - V-notch impact toughness PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513250 DO - https://doi.org/10.1016/j.procir.2020.09.095 VL - 94 SP - 627 EP - 631 PB - Elsevier B.V. AN - OPUS4-51325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Alexandrov, B. A1 - Rethmeier, Michael T1 - Low heat input gas metal arc welding for dissimilar metal weld overlays part III: hydrogen-assisted cracking susceptibility JF - Welding in the World N2 - Dissimilar metal weld overlays of nickel-base alloys on low-alloy steel components are commonly used in the oil and gas, petrochemical, and power generation industries to provide corrosion and oxidation resistance in a wide range of service Environments and temperatures. Traditionally, dissimilar weld overlays are produced using cold or hot wire gas tungsten arc welding. This study aims to identify and evaluate potential advantages of low heat input gas metal arc welding processes over the conventional gas tungsten arc welding in the production of such overlays. Parts I and II of this publication series described characteristics of the heat-affected zone and the transition zone region of alloy 625 on grade 22 steel overlays. These results indicate a good resistance against hydrogen-assisted cracking, which is being verified within this third part of the publication series. To determine the hydrogen-assisted cracking susceptibility, welded samples are tested using the delayed hydrogen-assisted cracking test. Fractography is performed using scanning electron microscopy along with energy dispersive spectroscopy. The results confirm the suitability and efficiency of low heat input gas metal arc welding for dissimilar weld overlays. Variation of the postweld heat treatment procedure bears potential for improvement in this respect. KW - Low heat input GMA welding KW - Dissimilar metal weld overlays KW - Coarse-grained heat-affected zone KW - Grain size KW - Microstructure KW - Fusion zone KW - Nickel alloys PY - 2019 DO - https://doi.org/10.1007/s40194-018-0674-7 VL - 63 IS - 3 SP - 591 EP - 598 PB - Springer AN - OPUS4-48096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Alexandrov, B. T. A1 - Rethmeier, Michael T1 - Low heat input gas metal arc welding for dissimilar metal weld overlays part II: the transition zone JF - Welding in the World N2 - Dissimilar metal weld overlays (DMWOL) of nickel base alloys on low alloy steel components are commonly used in the oil and gas, petrochemical, and power generation industries to provide corrosion and oxidation resistance in a wide range of service environments and temperatures. Traditionally, dissimilar weld overlays are produced using cold or hot wire gas tungsten arc welding. This study aims to identify and evaluate potential advantages of low heat input gas metal arc welding processes over the conventional gas tungsten arc welding in the production of dissimilar weld overlays. In order to evaluate the quality of these overlays regarding resistance against hydrogen-assisted cracking, their transition zone region is investigated in this part of the publication series. Metallurgical characterization, including energy-dispersive x-ray spectroscopy, is performed on Alloy 625/grade 22 steel overlays. The transition zone is characterized by a narrow planar growth zone and steep compositional gradients from the fusion boundary towards the weld metal. Evidence of low carbon contents in the planar growth zone, as well as for carbide precipitation in the cellular growth zone was found. The microstructure in the transition zone region of the fusion zone shows characteristics known to be suitable for good resistance against hydrogen embrittlement. KW - Low heat input Gma welding KW - Dissimilar metal weld overlays KW - Coarse grained heat affected zone KW - Grain size KW - Microstructure KW - Fusion zone, nickel alloys PY - 2018 DO - https://doi.org/10.1007/s40194-017-0539-5 VL - 62 IS - 2 SP - 317 EP - 324 PB - Springer CY - Heidelberg, Germany AN - OPUS4-44721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Rethmeier, Michael A1 - Alexandrov, B. T. T1 - Low heat input gas metal arc welding for dissimilar metal weld overlays part I: the heat-affected zone JF - Welding in the World N2 - Dissimilar metal weld overlays of nickel base alloys on low alloy steel components are commonly used in the oil and gas, petro-chemical, and power generation industries to provide corrosion and oxidation resistance in a wide range of service environments and temperatures. Traditionally, weld overlays are produced using cold or hot wire gas tungsten arc welding (GTAW). Potential advantages of cold metal Transfer (CMT) welding, a low heat input gas metal arc welding process, over the conventional GTAW in production of weld overlays were evaluated. Metallurgical characterization was performed on CMT overlays of Alloy 625 filler metal on Grade 11 and Grade 22 steels. Significant grain refinement was found in the high temperature HAZ compared to the traditional coarse-grained HAZ in arc welding. Evidences of incomplete carbide dissolution, limited carbon diffusion, and incomplete transformation to austenite were also found. These phenomena were related to high heating and cooling rates and short dwell times of the high-temperature HAZ in austenitic state. Tempering effects in the steel HAZ were identified, showing a potential for development of CMT temperbead procedures. Based on the results of this study, the steel HAZ regions in CMT overlays were classified as high-temperature HAZ and intercritical HAZ. KW - Clad steels KW - Nickel alloys KW - Low alloy steels KW - GMA surfacing KW - DIP transfer KW - Coarse-grained heat-affected zone KW - Microstructure PY - 2016 DO - https://doi.org/10.1007/s40194-016-0306-z SN - 0043-2288 SN - 1878-6669 VL - 60 IS - 3 SP - 459 EP - 473 PB - Springer CY - Heidelberg, Germany AN - OPUS4-36377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Midik, A. A1 - Biegler, M. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Joining 30 mm Thick Shipbuilding Steel Plates EH36 Using a Process Combination of Hybrid Laser Arc Welding and Submerged Arc Welding JF - Journal of Manufacturing and Materials Processing N2 - This article presents a cost-effective and reliable method for welding 30 mm thick sheets of shipbuilding steel EH36. The method proposes to perform butt welding in a two-run technique using hybrid laser arc welding (HLAW) and submerged arc welding (SAW). The HLAW is performed as a partial penetration weld with a penetration depth of approximately 25 mm. The SAWis carried out as a second run on the opposite side. With a SAWpenetration depth of 8 mm, the weld cross-section is closed with the reliable intersection of both passes. The advantages of the proposed welding method are: no need for forming of the HLAW root; the SAW pass can effectively eliminate pores in the HLAWroot; the high stability of the welding process regarding the preparation quality of the weld edges. Plasma cut edges can be welded without lack of fusion defects. The weld quality achieved is confirmed by destructive tests. KW - Shipbuilding steel KW - Hybrid laser arc welding KW - Submerged arc welding KW - Hardness KW - Bending test KW - Two-run welding technique KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556090 DO - https://doi.org/10.3390/jmmp6040084 SN - 2504-4494 VL - 6 IS - 4 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-55609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigations on laser beam welding of high-manganese austenitic and austenitic-ferritic stainless steels JF - The Paton welding journal KW - Laser welding KW - CO2- and Nd:YAG laser KW - Stainless austenitic and duplex steels KW - Higher manganese content KW - Process stability KW - Shielding atmosphere KW - Weld metal KW - Microstructure KW - Mechanical properties KW - Corrosion resistance PY - 2012 SN - 0957-798X VL - 1 SP - 10 EP - 14 PB - E. O. Paton Electric Welding Institute of the National Acad. of Sciences of Ukraine CY - Kyïv AN - OPUS4-27062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ö. A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser arc welding of thick high-strength piepline steels of grade X120 with adapted heat input JF - Journal of Materials Processing Tech. N2 - The influence of heat input and welding speed on the microstructure and mechanical properties of single-pass hybrid laser arc welded 20mm thick plates of high-strength pipeline steel X120 were presented. The heat Input was varied in the range of 1.4 kJ mm−1 to 2.9 kJ mm−1, while the welding speed was changed between 0.5m min−1 and 1.5m min−1. A novel technique of bath support based on external oscillating electromagnetic field was used to compensate the hydrostatic pressure at low welding velocities. A major advantage of this technology is, that the welding speed and thus the cooling time t8/5 can be variated in a wide parameter window without issues regarding the weld root quality. The recommended welding thermal cycles for the pipeline steel X120 can be met by that way. All tested Charpy-V specimens meet the requirements of API 5 L regarding the impact energy. For higher heat inputs the average impact energy was 144 ± 37 J at a testing temperature of −40 °C. High heat Input above 1.6 kJ mm−1 leads to softening in the weld metal and heat-affected-zone resulting in loss of strength. The minimum tensile strength of 915 MPa could be achieved at heat inputs between 1.4 kJ mm−1 and 1.6 kJ mm−1. KW - High-strength low-alloy steel KW - Hybrid laser-arc welding KW - Mechanical-technological properties KW - Microstructure KW - Toughness KW - Pipeline steel of grade X120 PY - 2020 DO - https://doi.org/10.1016/j.jmatprotec.2019.116358 SN - 0924-0136 VL - 275 SP - 116358 PB - Elsevier B.V. AN - OPUS4-50008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition JF - Advanced engineering materials N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542262 DO - https://doi.org/10.1002/adem.202101333 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babu, N. K. A1 - Brauser, S. A1 - Rethmeier, Michael A1 - Cross, C.E. T1 - Characterization of microstructure and deformation behaviour of resistance spot welded AZ31 magnesium alloy JF - Materials science and engineering A N2 - Resistance spot welds were prepared on 3 mm thick sheets of continuous cast and rolled AZ31 magnesium alloy. The microstructure and composition analysis of weld nugget, heat affected zone (HAZ) and base metal were examined using optical and scanning electron microscopy (HR-SEM and EDS/X). The resistance spot welded magnesium alloy joints consist mainly of weld nugget and HAZ. The nugget contains two different structures, i.e. the cellular-dendritic structure at the edge of the nugget and the equiaxed dendritic structure in the centre of the nugget. The structure transition is attributed to the changes of solidification conditions. In the HAZ, grain boundary melting occurred and grain boundaries became coarse. It has been shown that hardness reduction in the weld nugget and HAZ compared with base metal is evident due to dendritic microstructure and grain growth, respectively. The results showed that spot welded joints have failed in interfacial mode under torsion and tensile–shear loading conditions. Digital image correlation during tensile–shear testing showed that low surface strains occur in the interfacial failure mode, because fracture and deformation happened primarily in the nugget area. KW - Resistance spot welding KW - AZ31 magnesium alloy KW - Microstructure KW - Hardness KW - Torsion KW - Tensile–shear PY - 2012 DO - https://doi.org/10.1016/j.msea.2012.04.021 SN - 0921-5093 SN - 1873-4936 VL - 549 SP - 149 EP - 156 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-25924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, Sergej A1 - El-Batahgy, Abdel-Monem A1 - Gumenyuk, Andrey A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Application of Hybrid Laser Arc Welding for Construction of LNG Tanks Made of Thick Cryogenic 9% Ni Steel Plates JF - Lasers in Manufacturing and Materials Processing N2 - Hybrid laser-arc welding (HLAW) was applied for butt welding of 14.5 mm thick plates of ferritic cryogenic steel X8Ni9 containing 9% Ni, which is used for manufacturing storage and transport facilities of liquefied natural gas (LNG). The weld seam formation and the achievable metallurgical and mechanical properties of the hybrid welds were investigated experimentally for two types of filler wire, an austenitic wire dissimilar to the base metal (BM) and an experimentally produced matching ferritic wire. Safe penetration and uniform distribution of the austenitic filler metal in the narrow hybrid weld could only be achieved in the upper, arcdominated part of the weld. The pronounced heterogeneous distribution of the austenitic filler metal in the middle part and in the root area of the weld could not ensure sufficient notched impact toughness of the weld metal (WM). As a result, a decrease in the impact energy down to 17±3 J was observed, which is below the acceptance level of ≥34 J for cryogenic applications. In contrast, the use of a matching ferritic filler wire resulted in satisfactory impact energy of the hybrid welds of up to 134±52 J at the concerned cryogenic temperature of -196 °C. The obtained results contribute to an important and remarkable conversion in automated manufacturing of LNG facilities. In other words, the results will help to develop a new laser-based welding technology, where both quality and productivity are considered.The efficiency of the developed welding process has been demonstrated by manufacturing a prototype where a segment of the inner wall of large size LNG storage tank was constructed. In this concern, hybrid laser arc welding was conducted in both horizontal (2G) and vertical (3G) positions as a simulation to the actual onsite manufacturing. The prototype was fabricated twice where its quality was confirmed based on non-destructive and destructive examinations. KW - Hardness KW - Hybrid Laser arc Welding KW - 9% Ni Steel KW - Fusion zone size KW - Microstructure KW - Tensile Strength KW - Impact Absorbed Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586080 DO - https://doi.org/10.1007/s40516-023-00229-2 SP - 1 EP - 22 PB - Springer Nature AN - OPUS4-58608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -