TY - RPRT A1 - Rethmeier, Michael A1 - Biegler, M. T1 - Qualifizierung der Schweißstruktursimulation für die wirtschaftliche Bearbeitung additiver fertigungstechnischer Fragestellungen am Beispiel des Laserpulverauftragschweißens N2 - Additive Fertigungsverfahren, speziell das selektive Laserschmelzen sowie das Laserpulverauftragsschweißen, ermöglichen eine enorme Steigerung der Flexibilität und erlauben Kleinserienteile mit hoher Genauigkeit und geringen Kosten herzustellen. Für den erfolgreichen wirtschaftlichen Einsatz dieser neuartigen Fertigungsverfahren spielt die Einhaltung des First-time-right-Prinzips eine entscheidende Rolle: Bauteile sollten bereits im ersten Versuch allen Anforderungen genügen. Aufgrund der jungen Geschichte dieses Fertigungszweigs und der damit einhergehenden fehlenden Erfahrungen und Richtlinien ist diese elementare Forderung heute nur in wenigen Fällen realisierbar. Die geforderten Qualitätsstandards können aktuell nur über experimentelle Iterationsschleifen eingehalten werden, sodass das große Potential einer flexiblen und schnellen Fertigung in erheblichem Maß reduziert wird. Die Komplexität der gefertigten Bauteile und die des Prozesses an sich lassen eine erfahrungsbasierte Vorhersage der Verzüge und Eigenspannungen kaum zu. Zudem werden auch in Zukunft Richtlinien und Normen nicht das komplette Anwendungsspektrum abbilden können. Die eigenspannungsbedingten Verzüge spielen demnach eine bedeutende Rolle und stellen zusammen mit dem Erreichen der Maßhaltigkeit eine entscheidende technologische Herausforderung beim Einsatz additiver Fertigungsverfahren dar. Die numerische Simulation ermöglicht die Vorhersage von Bauteilverzügen und –spannungen und kann durch virtuelle Abprüfung von Herstellstrategien die Anzahl von Experimente reduzieren. Bisherige numerische Betrachtungen von zusatzwerkstoffbasierten Verfahren, zu denen unter anderem das Laserpulverauftragschweißen (LPA) gehört, beschränkten sich primär auf akademische Beispiele mit geringer Komplexität. Für die Simulation von konkreten Anwendungsfällen auf Bauteilebene liegen bisher keine validierten, numerischen Methoden und Ansätze vor, die eine wirtschaftliche Anwendung der Schweißsimulation ermöglichen. Dieses Projekt wird Simulationsmodelle zur numerischen Betrachtung komplexer additiv gefertigter Bauteile entwickeln. Dafür wird der Prozess in vereinfachten Simulationen nachgebildet und anhand von Experimenten validiert. Anschließend werden Methoden zur automatisierten Pfadgenerierung für komplexe Bauteile erprobt und in der Simulation implementiert. Schließlich werden zur Reduktion der Rechenzeit verschiedene Methoden zur Vereinfachung evaluiert und verglichen. Das Ziel ist die Steigerung der Verlässlichkeit in der Simulation, um prädiktive Aussagen über die Qualität additiv gefertigter Bauteile zu ermöglichen. KW - Schweißstruktursimulation KW - LPA KW - Additive Manufacturing PY - 2019 SN - 978-3-96780-042-5 SP - 1 EP - 106 PB - Forschungsvereinigung Stahlanwendungen AN - OPUS4-57321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rethmeier, Michael A1 - Biegler, M. A1 - Javaheri, E. T1 - Qualifizierung der instrumentierten Eindringprüfung zur Kennwertermittlung für hochfeste Stähle mit Schweißungen N2 - Der Einsatz von hochfesten Stählen im Karosseriebereich des Automobilbaus hat während der letzten Jahre stark zugenommen. Hierzu zählen Dual- und Komplexphasenstähle, welche durch Kombination unterschiedlicher Gefügebestandteile auch deren Vorteile kombinieren, sowie TRIP (TRansformation Induced Plasticity) und Mangan-Bor Stähle, welche sehr gute Umformeigenschaften mit hohen Festigkeiten durch Martensitbildung bei der Umformung kombinieren. TWIP (Twinning Induced Plasticity) Stähle erreichen ähnliche Effekte durch forcierte Zwillingsbildung. Die Ursachen für den Einsatz dieser Stähle liegen in dem Potential dieser Materialien zur Gewichts- und Kostenreduzierung, bei gleichzeitiger Erhöhung der Fahrgastsicherheit. Auf Grund der prinzipiell gegebenen Schweißeignung dieser Stähle, werden die klassischen Fügeverfahren im Karosseriebau wie das kostengünstige und effektive Widerstandspunktschweißen, das Metall-Schutzgas (MSG)-Schweißen oder das Laserschweißen angewendet. Allerdings treten teilweise Herausforderungen, beispielsweise durch Gefügeveränderungen in den Fügestellen auf, die zu ungewollten Aufhärtungen oder Erweichungen führen. In diesem Projekt wird ein Verfahren entwickelt, mit welchem die lokalen Werkstoffeigenschaften von im Automobilbau typischen Werkstoffen und deren Fügestellen bestimmt werden können. Relevante Kennwerte sind in erster Linie das SpannungsDehnungs-Verhalten der verschiedenen Zonen einer Schweißverbindung; relevante Zonen wiederum sind neben dem Grundwerkstoff die Wärmeeinflusszone und das Schweißgut. Zu diesem Zweck wird das Verfahren der instrumentierten Eindringprüfung für den Einsatz bei hochfesten Stählen weiterentwickelt. Zunächst werden hierzu Zugversuche an einfachen Grundwerkstoffgeometrien durchgeführt. Im Anschluss wird die optische Dehnungsfeldmessung an stark taillierten, geschweißten Zugversuchsproben durchgeführt. Die Taillierung dient dem Zweck, die WEZ auch mittels WPS über den gesamten Querschnitt der Probe erzeugen zu können, bzw. im Versuch auch Dehnungen in den relevanten Bereichen herbeizuführen. Das im Projekt angewendete Auswerteverfahren, welches auf nichtlinearen Regressionsmodellen in Form von künstlichen, neuronalen Netzwerken beruht, ermöglicht die Vorhersage des Festigkeitsverhaltens des Werkstoffes anhand der gemessenen Krafteindringwegdaten. KW - Eindringprüfung KW - Hochfester Stahl KW - Prüfverfahren PY - 2020 SN - 978-3-946885-98-6 SP - 1 EP - 164 PB - Forschungsvereinigung Stahlanwendungen AN - OPUS4-57322 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Gook, S. A1 - Rethmeier, Michael T1 - KI zur Prozessüberwachung im Unterpulverschweißen N2 - Beim Unterpulverschweißen sind die Prozessgeräusche ein Indikator für eine gute Fügequalität. Diese Beurteilung kann i.d.R. nur von einer erfahrenen Fachkraft durchgeführt werden. Eine kürzlich entwickelte künstliche Intelligenz kann automatisch das akustische Prozesssignal anhand vortrainierter Merkmale klassifizieren und die Fügequalität anhand des Geräuschs beurteilen. Der Algorithmus, einmal richtig trainiert, kann den Prüfaufwand beim Unterpulverschweißen deutlich reduzieren. KW - Unterpulverschweißen KW - Künstliche Intelligenz KW - Prozessüberwachung KW - Körperschall PY - 2024 SP - 1 EP - 2 AN - OPUS4-59483 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, R. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Laser-Pulver-Auftragschweißen von funktional gradierten Materialien auf Cobalt-Chrom Basis N2 - Um Bauteile vor Verschleiß und Korrosion zu schützen werden Beschichtungen aus resistenteren Materialien aufgetragen. Hierzu zählen unter anderen die Legierungen auf Cobalt-Chrom Basis. Der diskrete Materialsprung ist jedoch unter thermischen und mechanischen Belastungen häufig Ursache für das Versagen der Beschichtung. In dieser Arbeit werden daher Materialgradierungen von verschiedenen Stahllegierungen zu einer Cobalt-Chrom Basislegierung untersucht. Die Ergebnissen werden dafür auch mit Resultaten zu vorangegangenen Untersuchungen verglichen. Kern der Arbeit bilden geätzte Schliffbilder der Materialpaarungen und Auswertungen mittels Farbeindringprüfung sowie die metallografische Bestimmung der Porosität. Ziel der Arbeit ist ein defektfreier Aufbau der funktional gradierten Materialpaarungen. T2 - 43. Assistentenseminar Fügetechnik CY - Päwesin, Germany DA - 20.09.2023 KW - Directed Enery Deposition KW - Funktionally Graded Material KW - Additive Manufacturing KW - DED KW - FGM KW - AM PY - 2023 SN - 978-3-96144-212-6 SP - 1 EP - 6 PB - DVS Media GmbH AN - OPUS4-59116 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raute, J. A1 - Seitz, G. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Wire Electron Beam Additive Manufacturing von niedriglegierten Zinnbronzen – Erreichbare Bauteileigenschaften und Prozessmerkmale N2 - Die Additive Fertigung gewinnt zunehmend an Bedeutung für die Verarbeitung von Kupferwerkstoffen im industriellen Umfeld. Hierbei wird verstärkt auf drahtförmige Ausgangswerkstoffe gesetzt, da diese Vorteile im Handling bieten, bereits aus der Schweißtechnik bekannt sind und sich zumeist durch geringere Beschaffungskosten auszeichnen. In den letzten Jahren entwickelte sich unter den drahtbasierten Verfahren der Directed-Energy-Deposition (DED) eine Prozessvariante unter Nutzung des Elektronenstrahls zur industriellen Marktreife. Dabei zeigt die Technologie Wire Electron Beam Additive Manufacturing (DED-EB) besondere Vorteile gegenüber anderen DED-Prozessen für die Anwendung an Kupfer. Um das Verfahren einem breiten Anwenderkreis in der Industrie zugänglich zu machen, fehlen jedoch Daten zu Leistungsfähigkeit, Prozessgrenzen und Anwendungsmöglichkeit- en. Die vorliegende Untersuchung beschäftigt sich mit dieser Problemstellung am Beispiel der Legierung CuSn1MnSi. Über mehrstufige Testschweißungen werden die physikalisch möglichen Prozessgrenzen ermittelt und Rückschlüsse über die Eignung der Parameter zum additiven Aufbau gezogen. An verschiedenen additiv gefertigten Probekörpern werden anschließend Kennwerte für Aufbaurate, Härte, Mikrostruktur, Oberflächenqualität sowie mechanische Festigkeitswerte ermittelt. Es zeigt sich, dass das die durch DED-EB hergestellten Proben, trotz des groben Gefüges sowie der thermischen Belastung im Aufbauprozess, in ihren Eigenschaften gut mit den Spezifikationen des Ausgangsmaterials übereinstimmen. T2 - Kupfersymposium 2023 CY - Jena, Germany DA - 29.11.2023 KW - Wire Electron Beam Additive Manufacturing KW - DED-EB KW - CuSn1 KW - Additive Fertigung PY - 2023 SN - 978-3-910411-03-6 SP - 28 EP - 33 PB - Kupferverband e. V. AN - OPUS4-59118 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Process Setup and Boundaries of Wire Electron Beam Additive Manufacturing of High-Strength Aluminum Bronze N2 - In recent years, in addition to the commonly known wire-based processes of Directed Energy Deposition using lasers, a process variant using the electron beam has also developed to industrial market maturity. The process variant offers particular potential for processing highly conductive, reflective or oxidation-prone materials. However, for industrial usage, there is a lack of comprehensive data on performance, limitations and possible applications. The present study bridges the gap using the example of the high-strength aluminum bronze CuAl8Ni6. Multi-stage test welds are used to determine the limitations of the process and to draw conclusions about the suitability of the parameters for additive manufacturing. For this purpose, optimal ranges for energy input, possible welding speeds and the scalability of the process were investigated. Finally, additive test specimens in the form of cylinders and walls are produced, and the hardness profile, microstructure and mechanical properties are investigated. It is found that the material CuAl8Ni6 can be well processed using wire electron beam additive manufacturing. The microstructure is similar to a cast structure, the hardness profile over the height of the specimens is constant, and the tensile strength and elongation at fracture values achieved the specification of the raw material. KW - Wire electron beam additive manufacturing KW - Aluminum bronze KW - Wire-based additive manufacturing KW - EBAM KW - DED-EB PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580890 DO - https://doi.org/10.3390/met13081416 VL - 13 IS - 8 SP - 1 EP - 16 PB - MDPI AN - OPUS4-58089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunner-Schwer, C. A1 - Simón Muzás, Juan A1 - Biegler, M. A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Laser Welding of L-PBF AM components out of Inconel 718 N2 - With regard to efficient production, it is desirable to combine the respective advantages of additively and conventionally manufactured components. Particularly in the case of large-volume components that also include filigree or complex structures, it makes sense to divide the overall part into individual elements, which afterwards have to be joined by welding. The following research represents a first step in fundamentally investigating and characterizing the joint welding of Laser Powder Bed Fusion (L-PBF) components made of Inconel 718. For this purpose, bead-on-plate welds were performed on plates manufactured using the L-PBF process and compared with the conventionally manufactured material. Conventional laser beam welding was used as welding process. The weld geometry was investigated as a function of the L-PBF build-up orientation. It was found that the welding depth and weld geometry differ depending on this orientation and in comparison to the conventional material. T2 - 12th CIRP Conference on Photonic Technologies [LANE 2022] CY - Fürth, Germany DA - 04.09.2022 KW - Laser Welding KW - L-PBF KW - PBF-LB/M KW - Seam geometry KW - Bead-on-plate welds PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560012 DO - https://doi.org/10.1016/j.procir.2022.08.072 SN - 2212-8271 VL - 111 SP - 92 EP - 96 PB - Elsevier B.V. AN - OPUS4-56001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -