TY - JOUR A1 - Raute, Julius A1 - Schmidt, Jonathan A1 - Jokisch, Torsten A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Prozessführung und erreichbare Nahtqualitäten: Elektronenstrahlschweißen von additiv gefertigtem Inconel 939 N2 - Additive Fertigungstechnologien wie das Laser-Pulverbett-Verfahren bieten großes Potenzial für die Fertigung von Neu und Ersatzteilen für stationäre Gasturbinen aus Nickelsuperlegierungen wie Inconel 939 (IN939). Um die Integration in bestehende Baugruppen zu ermöglichen und Bauraumbeschränkungen zu überwinden, muss die Prozesskette der additiven Fertigung um geeignete Fügetechniken erweitert werden. Die vorliegende Arbeit beschäftigt sich daher mit dem Schweißen von Inconel 939. Hierbei werden Bleche aus Gussmaterial und der additiven Herstellung mittels Laser im Pulverbett beim Elektronenstrahlschweißen verglichen. Im Fokus der Untersuchung stehen die erreichbare Nahtqualität im Hinblick auf geometrische Unregelmäßigkeiten sowie innere Defekte in Form von Mikrorissen in der Wärmeeinflusszone. Bei der Auswertung der geschweißten Proben zeigen sich keine Unterschiede in der Ausbildung der Nahtform zwischen dem additiv gefertigten Material und dem Gusswerkstoff. Für beide Materialien ließ sich bei hohen Vorschubgeschwindigkeiten von 20 mm/s die höchste Bewertungsgruppe für Strahlgeschweißte Nähte nach DIN EN ISO 13919-1 erreichen. Unabhängig von der Herstellungsart zeigen beide Materialien eine Zunahme der Rissneigung mit steigendem Vorschub. Das Material aus der additiven Herstellung weist aufgrund seiner Mikrostruktur insgesamt jedoch deutlich weniger Mikrorisse auf, was Potenzial für die Anwendung in der Praxis eröffnet. KW - Elektronenstrahlschweißen KW - PBF-LB/M KW - Inconell939 PY - 2025 UR - https://www.schweissenundschneiden.de/artikel/prozessfuehrung-und-erreichbare-naht-qualitaeten-elektronenstrahlschweissen-von-additiv-gefertigtem-inconel-939 DO - https://doi.org/10.53192/SUS202510 VL - 77 IS - 10 SP - 2 EP - 8 PB - DVS Media Verlag CY - Eltville am Rhein, Deutschland AN - OPUS4-64300 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raute, Julius A1 - Beret, Alexander A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Ökobilanzierung in der additiven Fertigung – Laser- vs. Elektronenstrahl N2 - Die additive Fertigung gewinnt für industrielle Anwendungen zunehmend an Bedeutung. In diesem Zusammenhang sind Verfahren der Directed Energy Deposition (DED) besonders gefragt, um hohe Aufbauraten zu erreichen. Neben den bekannten laserstrahlbasierten Verfahren hat auch der Elektronenstrahl die industrielle Marktreife erreicht. Das Wire Electron Beam Additive Manufacturing bietet zum Beispiel Vorteile bei der Verarbeitung von Kupferwerkstoffen. In der Literatur wird die höhere Energieeffizienz und die daraus resultierende Verbesserung der CO2-Bilanz des Elektronenstrahls hervorgehoben. Es fehlt jedoch an praktischen Studien mit Messdaten, um das Potenzial der Technologie zu quantifizieren. In dieser Arbeit wird eine vergleichende Ökobilanz zwischen der additiven Fertigung mit Draht und Elektronenstrahl (DED-EB) und der additiven Fertigung mit Laserstrahl und Pulver (DED-LB) durchgeführt. Dazu werden die Ressourcen für die Herstellung ermittelt, ein Testbauteil mit beiden Verfahren hergestellt und der gesamte Energieverbrauch gemessen. Die Umweltauswirkungen werden dann mit den Faktoren Treibhauspotenzial (GWP100), Ozonbildungspotenzial (POCP), Versauerungspotenzial (AP), Eutrophierungspotenzial (EP) abgeschätzt. Es zeigt sich, dass das Wire Electron Beam Additive Manufacturing durch einen deutlich geringeren Energiebedarf gekennzeichnet ist. Darüber hinaus gewährleistet die Verwendung von Draht eine größere Ressourceneffizienz, was zu insgesamt besseren Ökobilanzergebnissen führt. KW - Ökobilanzierung (LCA) KW - Additive Fertigung KW - Directed Energy Deposition KW - Kupfer KW - Wire Electron Beam Additive Manufacturing PY - 2024 SP - 26 EP - 32 AN - OPUS4-62234 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Arc-sidewall-attaching-driven control of swing arc motion in narrow gap GMAW N2 - A novel, event-driven approach to controlling the weaving motion in swing arc narrow gap GMAW is presented in this study. The control method is based on independently detecting the arc attachment event at each sidewall of the narrow groove to adjust the weaving motion in real time. Previous arc sensing approaches for swing arc principles are based on evaluating and comparing arc sensor readings collected during the dwell periods at each sidewall. Not only does this require the torch to be positioned at the groove centre and the arc motion to be symmetric, but previous methods have also been shown to rely on complex parametrization of control parameters. The newly presented approach is based on the real-time monitoring of the welding current progression during the approach of the arc towards the sidewall of the groove independently on each side. As soon as the arc attachment at the sidewall is detected based on a characteristic rise in the current signal, the weaving motion is stopped. For reference experiments in a 21-mm wide groove, the weaving angle amplitude is controlled and limited to 50° on both sides individually, resulting in stable process conditions and uniform sidewall fusion. It is further shown that the newly developed control method can successfully be applied to groove widths of 18 mm and 24 mm without reconfiguration of the control parameters, highlighting the flexibility of the approach. KW - Gas metal arc welding KW - Narrow gap KW - Arc sensor KW - Control PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647640 DO - https://doi.org/10.1007/s40194-025-02238-5 SN - 0043-2288 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-64764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Quiroz Penaranda, Vanessa T1 - Investigation on laser beam welding of high-manganese austenitic and austenitic-ferritic stainless steels PY - 2012 SN - 0005-111x SN - 0005-2302 VL - 1 IS - 705 SP - 12 EP - 17 CY - Kiev, Ukraine AN - OPUS4-27209 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of the hot cracking susceptibility of laser welds with the controlled tensile weldability test N2 - Due to significant developments over the last decades, laser beam welding has become a well-established industrial process offering high processing speeds and causing low component distortions. But an important issue currently preventing its intense use, especially in the energy or plant construction sector where high alloy steels are applied, concerns hot crack formation. Although considerable advances in understanding hot cracking mechanisms have been made, most of the known influencing factors are metallurgical in character. The thermo-mechanical effects are barely considered or quantified. Up to the present, there exist numerous hot cracking tests that were however conceived for welding methods other than laser beam welding. Considering the special features of the laser welding process, such as high cooling rates and the narrow process zone, results obtained with other welding techniques and test procedures cannot be transferred to laser beam welding. In this study, the laser beam weldability of various stainless steels was examined in terms of their susceptibility to hot cracking by means of the controlled tensile weldability test, which was proven to be suitable for use in conjunction with CO2 laser welding. This test allows the application of tensile strain at a variable fixed cross-head speed transverse to the welding direction. Full and partial penetration bead-on-plate welds were produced. In a first attempt to determine the impact of the applied external strain on the local transient strains and strain rates near the weld pool, an optical system was used to measure the backside surface of partial penetration welds. The results showed the influence of the strain and the strain rates on hot crack formation. Furthermore, a classification of the studied austenitic, duplex and ferritic stainless steels according to the established test criteria (critical strain and cross-head speed) was conducted. KW - Laser beam welding KW - CO2 laser KW - Hot cracking KW - Stainless steels KW - Critical strains KW - Strain rates KW - Hot cracking test KW - Controlled tensile weldability test PY - 2012 DO - https://doi.org/10.1177/0309324712462120 SN - 0309-3247 SN - 2041-3130 VL - 47 IS - 8 SP - 587 EP - 599 PB - Sage CY - London AN - OPUS4-27281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, André A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - High power laser beam welding of thick-walled ferromagnetic steels with electromagnetic weld pool support N2 - The paper describes an experimental investigation of high power laser beam welding with an electromagnetic weld pool support for up to 20 mm thick plates made of duplex steel (AISI 2205) and mild steel (S235JR). The results of the welding tests show a successful application of this technology at ferromagnetic metals. Irregular sagging was suppressed successfully. An ac-power of less than 2 kW at oscillation frequencies between 800 Hz and 1.7 kHz is necessary for a full compasation of the hydrostatic pressure. Thus, it was demonstrated that the electromagnetic weld pool support is not only limited to non-ferromagnetic metals like austenitic steels. For future studies with duplex steel, the use of filler material has to take into account with regard to the balance of the mixed austenitic and ferritic phases. KW - Laser beam welding KW - Thick-walled steel KW - Ferromagnetic steel KW - Weld pool support PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377593 DO - https://doi.org/10.1016/j.phpro.2016.08.038 SN - 1875-3892 VL - 83 SP - 362 EP - 372 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-37759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, Carl Edward A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Influence of Ti and B additions on grain size and weldability of aluminium alloy 6082 N2 - Grain refinement is an important possibility to enhance the weldability of aluminium weld metal that is usually defined by its susceptibility to solidification cracking. In this study, grain refinement was achieved through the addition of commercial grain refiner containing titanium and boron to the GTA weld metal of aluminium alloy 6082. The weld metal mean grain size could be reduced significantly from about 70 µm to a saturated size of 21 µm with a change in grain shape from columnar to equiaxed. The grain refinement prevented the formation of centreline solidification cracking that was present only in welds with unrefined grain structure. A variation of torch speed led to a strong change of solidification parameters such as cooling rate that was measured in the weld metal and the corresponding solidification rate and thermal gradient. The ratio thermal gradient/growth rate (G/R) decreased from 50 K s/mm² (high torch speed) to 10 K s/mm² (low torch speed). However, the variation of torch speed did not change the tendency for solidification cracking. The microstructure of unrefined and completely refined weld metal was compared. The observed change in size and distribution of the interdendritic phases was related to the change in susceptibility to solidification cracking. KW - Aluminium KW - WIG-Schweißen KW - Kornfeinung KW - Schweißeignung KW - Heißrisse KW - Aluminium alloy KW - Solidification cracking KW - Weldability KW - GTA welding PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 09/10 SP - 95 EP - 104 PB - Springer CY - Oxford AN - OPUS4-26992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Vinzenz A1 - Klement, Oliver A1 - Sander, Steffen A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Recycling of Stainless Steel Milling Chips for Additive Manufacturing: A Three-Stage Comminution Approach Using a Fine Impact Mill N2 - The production of conventional metal powders for additive manufacturing process is energy intensive and costly. This study introduces a sustainable alternative by recycling stainless steel milling chips as feedstock for laser-powder directed energy deposition. The recycling process employs a three-stage mechanical comminution method utilizing a fine impact mill UPZ100 from Hosokawa Alpine AG. Characterization of the resulting powders is conducted through particle morphology analysis, flowability tests, and mechanical property assessments. The chip-derived powders exhibit comparable aspect ratios and sphericity to conventional water atomized powders, though with reduced flowability due to a pronounced fine fraction content. Elevated levels of oxides are observed, leading to the formation of an oxide layer on specimen blocks, without impairing the mechanical properties. Analyses of porosity, microstructure, and hardness indicate no significant differences when compared to conventional powders from water or gas atomization. This recycling approach not only mitigates waste but also enhances the potential for a circular and sustainable manufacturing process in the additive manufacturing industry and beyond. KW - Directed Energy Deposition KW - Recycling KW - Stainless steel KW - Comminution KW - Powder characteristics PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652037 DO - https://doi.org/10.1088/1757-899X/1332/1/012014 SN - 1757-8981 VL - 1332 IS - 1 SP - 1 EP - 7 PB - IOP Publishing AN - OPUS4-65203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, C.E. A1 - Pittner, Andreas A1 - Oder, Gabriele A1 - Neumann, R. S. A1 - Rooch, Heidemarie A1 - Dörfel, Ilona A1 - Österle, Werner A1 - Rethmeier, Michael T1 - Solidification of GTA aluminium weld metal: Part I - Grain morphology dependent upon alloy composition and grain refiner content N2 - The solidification conditions during welding strongly influence the weid metal microstructure and mechanical properties of a weid. In the first part of this study, the grain morphology of gas tungsten arc (GTA) bead-on-plate welds was investigated for the aluminum Alloys 1050A (Al 99.5), 6082 (Al SifMgMn), and 5083 (AI Mg4.5Mn0.7). The experiments revealed that increasing welding speed and alloy content allow the growth of small, equiaxed grains, particularly in the weid center. Furthermore, increasing grain refiner additions led to a Strong reduction of the weid metal mean grain size and hence facilitated the columnar to equiaxed transition (CET). In addition, wavelength dispersive X-ray spectroscopy (WDS) and transmission electron microscopy (TEM) analysis revealed in the weid metal TiB2 particles that were surrounded by Al3Ti. This suggests the duplex nucleation theory for nucleation of aluminum grains in GTA weid metal. KW - Aluminium KW - Gas tungsten arc welding (GTAW) KW - Grain refinement KW - Columnar to equiaxed transition (CET) KW - Epitaxial nucleation KW - Duplex nucleation theory PY - 2014 SN - 0043-2296 SN - 0096-7629 VL - 93 SP - 53-s EP - 59-s PB - American Welding Society CY - New York, NY AN - OPUS4-30413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marquardt, R. A1 - Gook, S. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Handgeführtes Laserstrahlschweissen am T-Stoss eines niedrig legierten Stahls N2 - Das handgeführte Laserstrahlschweißen gewinnt in der Industrie zunehmend an Bedeutung, da die hohe Produktivität und die einfache Handhabung Unternehmen wirtschaftliche Vorteile bieten. Derzeit ist der Einsatz in der Industrie jedoch auf Teile mit ästhetischen Anforderungen beschränkt, die häufig aus hochlegiertem Stahl bestehen. Um das Handschweißen mit Laserstrahl auch für Bauteile aus kostengünstigen Stähle mit guten mechanischen Eigenschaften einsetzen zu können, untersucht diese Studie den Einfluss des Schutzgases auf die Porosität am mikrolegierten Stahl HX340LAD mit einer Dicke von 1,5 mm. Getestet wurden die Gase Argon, Stickstoff, CO2 sowie Mischungen aus Argon und CO2 an T-Stöße mit Zusatzdraht. Die Qualifizierung der Porosität erfolgte gemäß DIN EN ISO 13919-1 an Querschliffen als auch mittels Röntgenuntersuchung. Die Ergebnisse zeigen, dass für diesen Stahl die Bewertungsgruppe B mittels CO2 als Schutzgas erreicht werden kann. Stickstoff führt zu Gruppe C, Argon zu D. KW - Handgeführtes Laserstrahlschweißen, HHLW, Stahl, Laser KW - HHLW KW - Stahl KW - Laser PY - 2025 SP - 22 EP - 25 PB - Schweizerischer Verein für Schweisstechnik SVS AN - OPUS4-65041 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Vinzenz A1 - Fasselt, Janek Maria A1 - Klötzer-Freese, Christian A1 - Kruse, Tobias A1 - Kleba-Ehrhardt, Rafael A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Recycling nickel aluminium bronze grinding chips to feedstock for directed energy deposition via impact whirl milling: Investigation on processability, microstructure and mechanical properties N2 - During the production of ship propellers, considerable quantities of grinding chips from nickel aluminium bronze areproduced. This paper examines the mechanical comminution of such chips via impact whirl milling and the utilization of twochip-powder batches as feedstock for a laser-based directed energy deposition process. The materials are characterized viadigital image analysis, standardized flowability tests, scanning electron microscopy and energy dispersive X-ray spectroscopyand are compared to conventional, gas atomized powder. The specimens deposited via directed energy deposition areanalyzed for density, hardness and microstructure and tensile properties for vertical and horizontal build up directions arecompared. At elevated mill rotation speeds, the comminution with impact whirl milling produced rounded particles, favorableflow properties and particle size distribution, making them suitable to deposit additive specimens. The microstructureexhibited characteristic martensitic phases due to the high cooling rates of the additive manufacturing process. The presenceof ceramic inclusions was observed in both the powder and on the tensile fracture surfaces, partly impairing the mechanicalproperties. However, specimens in the vertical build-up direction (Z) showed competitive tensile results, with 775 MPa intensile strength, 455 MPa in yield strength and 12.6 % elongation at break. The findings of this study indicate that recyclingof machining chips to additive manufacturing feedstock can be a viable option for reducing material costs and environmentalimpact. KW - Nickel aluminium bronze KW - Grinding chips KW - Recycling KW - Directed energy deposition KW - Material characterization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651214 DO - https://doi.org/10.1016/j.addma.2025.104804 SN - 2214-8604 VL - 105 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-65121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Putra, Stephen Nugraha A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Pusbatzkies, Pablo A1 - Rethmeier, Michael T1 - Elucidation of the laser beam energy attenuation by the vapor plume formation during high-power laser beam welding N2 - In high-power laser beam welding, a common phenomenon is the formation of a keyhole caused by the rapid evaporation of the material. Under atmospheric pressure, this evaporation generates a vapor plume that interacts with the laser beam, leading to energy attenuation and scattering of the laser radiation along its path. These interactions affect the stability of the process and the overall weld quality. This study investigates the influence of the vapor plume on the weld pool and keyhole dynamics during high-power laser beam welding of AlMg3 aluminum alloy through experimental and numerical approaches. The primary goal is to identify key vapor plume characteristics, particularly its length fluctuations, and to improve the accuracy of the numerical models. To achieve this, an algorithm was developed for the automated measurement of the vapor plume length using high-speed imaging and advanced data processing techniques. The measured plume length is then used to estimate additional vapor heating and laser energy attenuation using the Beer–Lambert law. A refined numerical CFD model, incorporating 3D transient heat transfer, fluid flow, and ray tracing, was developed to evaluate the vapor plume’s impact. Results show that already the time-averaged plume length effectively captures its transient influence and aligns well with experimental weld seam geometries. Additionally, energy scattering and absorption caused by the vapor plume led to a wider weld pool at the top surface. The study also shows an increased percentage of keyhole collapses due to the reduced laser power absorption at the keyhole bottom, further highlighting the importance of accurately modeling vapor plume effects. T2 - International Congress of Applications of Lasers & Electro-Optics 2025 CY - Orlando, USA DA - 12.10.2025 KW - Laser beam welding KW - Vapor plume formation KW - Weld pool KW - Keyhole dynamics KW - Numerical modeling PY - 2026 DO - https://doi.org/10.2351/7.0001863 SN - 1938-1387 IS - 38 SP - 012001-1 EP - 012001-9 PB - Laser Institute of America AN - OPUS4-64949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Comparison between CO2- and Nd: YAG-laser beam welding of high-strength CrMnNi steels for the automotive industry N2 - Austenitic and austenitic-ferritic CrMnNi-stainless steels are suitable materials in the transport and automotive industry due to their high corrosion resistance and high strength that allows weight and cost savings. This study focuses on the laser weldability of a commercial lean duplex and an austenitic high manganese stainless steel. The impact of different laser sources, i.e. a 5 kW CO2- and a 4 kW Nd:YAG-laser, and of the main process parameters on the resulting weld quality will be investigated. One important aspect will concern the appearance of weld defects such as pores and hot cracks. The factors causing such internal imperfections will be analysed in order to find effective methods for preventing them. Weld microstructure and the associated corrosion and mechanical properties will be assessed with different techniques and adequate process parameters for high quality welds will be determined. The advantages and limitations of the applied welding processes will be evaluated for future applications. KW - Laser beam welding KW - Stainless steel KW - Austenitic KW - Duplex KW - Weld microstructure KW - Pores KW - Cracks KW - Corrosion KW - Tensile strength PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 11/12 SP - 129 EP - 142 PB - Springer CY - Oxford AN - OPUS4-27911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigations on laser beam welding of high-manganese austenitic and austenitic-ferritic stainless steels N2 - 4.4 kW Nd:YAG laser and 5 kW CO2 laser were applied to welding 1.5 mm stainless steel sheets in CW mode. Manganese austenitic and lean duplex steels were selected as test materials and for comparison with Standard austenitic and Duplex steels. The influence of main laser welding Parameters on process stability and resulting weld quality, as well as the effects of weld edge preparation on the weld appearance and quality levels, were investigated. The welded joints obtained were subjected to radiographic tests for detection of internal imperfections, tensile and potentiodynamic tests were performed to evaluate the mechanical and corrosion properties. The results provide an insight into the advantages and limitations of the laser beam welding process for joining high-manganese alloyed stainless steels. Conditions for the production of defect-free and corrosion-resistant welds having good mechanical properties could be determined. KW - Laser welding KW - CO2- and Nd:YAG laser KW - Stainless austenitic and duplex steels KW - Higher manganese content KW - Process stability KW - Shielding atmosphere KW - Weld metal KW - Microstructure KW - Mechanical properties KW - Corrosion resistance PY - 2012 SN - 0957-798X VL - 1 SP - 10 EP - 14 PB - E. O. Paton Electric Welding Institute of the National Acad. of Sciences of Ukraine CY - Kyïv AN - OPUS4-27062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bevilacqua, Tommaso A1 - Gumenyuk, Andrey A1 - Habibi, Niloufar A1 - Hartwig, Philipp A1 - Klawonn, Axel A1 - Lanser, Martin A1 - Rethmeier, Michael A1 - Scheunemann, Lisa A1 - Schröeder, Jöerg T1 - Large-scale thermo-mechanical simulation of laser beam welding using high-performance computing: A qualitative reproduction of experimental results N2 - Laser beam welding (LBW) is a non-contact joining technique that has gained significant importance in modern industrial manufacturing. One potential problem, however, is the formation of solidification cracks, which particularly affects alloys with a pronounced melting range. The aim of the present work is the development of computational methods and software tools to numerically simulate LBW. In order to obtain a sufficiently accurate solution, a large number of finite elements has to be used. Therefore, a highly parallel scalable solver framework, based on the software library PETSc, was used to solve this computationally challenging problem on a high-performance computing architecture. Finally, the experimental results and the numerical simulations are compared. They are found to be in good qualitative agreement, which confirms the validity of the numerical simulations and allows for a better interpretation of the experimentally observed strain distribution. KW - Laser beam welding KW - Termo-mechanical processes KW - Solidification cracking KW - High-performance computing KW - Domain decomposition methods PY - 2025 DO - https://doi.org/10.1016/j.rineng.2025.108827 SN - 2590-1230 SP - 1 EP - 33 PB - Elsevier B.V. AN - OPUS4-65290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neubert, Sebastian A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Experimental determination of TRIP parameter K for mild- and high strength low alloy steels and a super martensitic filler material N2 - A combined experimental numerical approach is applied to determine the transformation induced plasticity (TRIP)-parameter K for different strength low-alloy steels of grade S355J2+N and S960QL as well as the super martensitic filler CN13-4-IG containing 13 wt% chromium and 4 wt% nickel. The thermo-physical analyses were conducted using a Gleeble® 3500 facility. The thermal histories of the specimens to be tested were extracted from corresponding simulations of a real gas metal arc weldment. In contrast to common TRIP-experiments which are based on complex specimens a simple flat specimen was utilized together with an engineering evaluation method. The evaluation method was validated with literature values for the TRIP-parameter. It could be shown that the proposed approach enables a correct description of the TRIP behavior. KW - Transformation induced plasticity (TRIP) KW - Phase transformation KW - High-strength low-alloy steel KW - Super martensitic filler material KW - Thermo physical simulation KW - Gleeble experiments PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-367297 DO - https://doi.org/10.1186/s40064-016-2474-0 VL - 5 IS - 575 SP - Paper 754, 1 EP - 16 PB - SpringerPlus AN - OPUS4-36729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tölle, Florian A1 - Gumenyuk, Andrey A1 - Gebhardt, Moritz Oliver A1 - Rethmeier, Michael T1 - Post-weld residual stress mitigation by scanning of a defocused laser beam N2 - High welding residual stresses can cause service life reducing consequences. Even though many processes have been developed to reduce these stresses, they are only applicable for wider welds and simple component geometries or are cost-intensive, respectively. The presented method uses a defocused beam after welding for heating the material regions on both sides of the weld. In this way, the welding stresses are decreased without contacting the surfaces using the available equipment. Different process parameters could be used depending on the component geometry and the laser power. The mechanism and the influence of the process parameters were investigated by FEM-simulation and experiments on S355J2+N steel and showed a stress reduction of about 73%. T2 - Lasers in Manufacturing 2011 - Proceedings of the Sixth International WLT Conference on Lasers in Manufacturing CY - Munich, Germany DA - 23.05.2011 KW - Residual stresses KW - Stress reduction KW - High energy beam welding KW - Post-weld heat treatment KW - Laser scanner optics PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-238482 DO - https://doi.org/10.1016/j.phpro.2011.03.052 SN - 1875-3892 VL - 12 IS - 1 SP - 410 EP - 418 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-23848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ö. A1 - Avilov, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Full penetration hybrid laser arc welding of up to 28 mm thick S355 plates using electromagnetic weld pool support N2 - The laser hybrid welding process offers many advantages regarding deep penetration, increased welding velocity and with the help of the supplied filler wire an improved bridgeability to gap and misalignment tolerances. High power laser systems with a power of approx. 30 kW are already available on the market. Nevertheless, multi-layer technology with an arc process is still used for welding of plates from a thickness from 20 mm. A potential cause is the process instability with increasing laser power. It is inevitable that gravity drop-out due to the high hydrostatic pressure at increasing wall thickness especially at welding in flat position and with a low welding speed. The surface tension decreases with increasing root width resulting from low welding velocities. To prevent such inadmissible defects of the seam a use of weld pool support is required. Usual weld pool support systems such as ceramic or powder supports require a mechanical detachment which is time-consuming. The electromagnetic weld pool support system described in this work shows an alternative weld pool support which works contactless. It is based on generating Lorentz forces in the weld pool due to oscillating magnetic field and induced eddy currents. This innovative technology offers single pass welds up to 28 mm in flat position and reduced welding velocity with a laser power of just 19 kW. It also leads to improved mechanical-technological properties of the seams because of the slow cooling rate. With usage of an electromagnetic weld pool support the limitation of the hybrid laser arc welding process in the thick sheet metal will be extend. KW - Electromagnetic weld pool support KW - Hybrid laser arc welding KW - Thick-walled steel KW - Single pass welding PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-468276 DO - https://doi.org/10.1088/1742-6596/1109/1/012015 SN - 1742-6596 VL - 1109 SP - 1 EP - 7 PB - IOP Publ. AN - OPUS4-46827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, M.O. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical analysis of hot cracking in laser-hybrid welded tubes N2 - In welding experiments conducted on heavy wall pipes, the penetration mode (full or partial penetration) occurred to be a significant factor influencing appearance of solidification cracks. To explain the observed phenomena and support further optimization of manufacturing processes, a computational model was developed, which used a sophisticated strategy to model the material. High stresses emerged in the models in regions which showed cracking during experiments. In partial penetration welding, they were caused by the prevention of weld shrinkage due to the cold and strong material below the joint. Another identified factor having an influence on high stress localization is bulging of the weld. PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-302961 DO - https://doi.org/10.1155/2013/520786 SN - 1687-8442 SN - 1687-8434 IS - Article ID 520786 SP - 1 EP - 8 PB - Hindawi Publishing Corporation CY - New York, NY, USA AN - OPUS4-30296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and numerical investigation of an electromagnetic weld pool control for laser beam welding N2 - The objective of this study was to investigate the influence of externally applied magnetic fields on the weld quality in laser beam welding. The optimization of the process parameters was performed using the results of computer simulations. Welding tests were performed with up to 20 kW laser beam power. It was shown that the AC magnet with 3 kW power supply allows for a prevention of the gravity drop-out for full penetration welding of 20 mm thick stainless steel plates. For partial penetration welding it was shown that an0.5 T DC magnetic field is enough for a suppression of convective flows in the weld pool. Partial penetration welding tests with 4 kW beam power showed that the application of AC magnetic fields can reduce weld porosity by a factor of 10 compared to the reference joints. The weld surface roughness was improved by 50%. KW - Laser beam welding KW - Electromagnetic weld pool support KW - Hartmann effect KW - Electromagnetic rectification PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-314405 DO - https://doi.org/10.1016/j.phpro.2014.08.006 SN - 1875-3892 VL - 56 SP - 515 EP - 524 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-31440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jonietz, Florian A1 - Ziegler, Mathias A1 - Myrach, Philipp A1 - Suwala, H. A1 - Rethmeier, Michael T1 - Untersuchung von Punktschweißverbindungen mit aktiver Thermografie N2 - Widerstandspunktschweißen ist insbesondere im Automobilbau eine der wichtigsten Fügetechniken. Bislang erfolgt die Qualitätssicherung überwiegend durch stichprobenartige zerstörende Prüfung. Eine zerstörungsfreie Prüftechnik würde neben der Reduzierung der Prüfkosten auch eine Optimierung des Punktschweißverfahrens bedeuten, da prinzipiell jeder Schweißpunkt geprüft werden könnte und somit auch eine Reduzierung der Anzahl der Schweißpunkte möglich ist. Es wird ein Verfahren vorgestellt, bei dem die Punktschweißverbindung zwischen zwei Stahlblechen optisch auf einer Blechseite mittels Laser oder Blitzlicht erwärmt wird. Die aufgeschmolzene Zone, die sogenannte Schweißlinse, stellt dabei neben der mechanischen Verbindung auch eine Wärmebrücke zwischen den beiden verschweißten Blechen dar, die bei diesem Verfahren ausgenutzt wird. Durch den verbesserten thermischen Kontakt zwischen den verschweißten Blechen an der Schweißlinse kontrastiert diese deutlich mit dem umgebenden Blechmaterial, bei dem der Wärmeübertrag zwischen den Blechen vergleichsweise gering ist. Dieser Kontrast im thermischen Verhalten kann mittels zeitabhängiger Thermografie gemessen werden. Durch das hier vorgestellte Verfahren kann mittels aktiver Thermografie sowohl in Transmissions- als auch in Reflexionsanordnung die Größe des thermischen Kontaktes zwischen den beiden Blechen ermittelt werden, welche ein Maß für die Größe der Schweißlinse und damit für die qualitative Güte der Schweißung darstellt. Ein Vorteil des entwickelten Verfahrens ist seine Anwendbarkeit auf Bleche ohne Oberflächenbehandlung. T2 - DACH-Jahrestagung 2015 CY - Salzburg, Austria DA - 11.05.2015 PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-343476 UR - http://www.ndt.net/?id=19068 SN - 1435-4934 VL - 21 IS - 4 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-34347 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser beam weldability of high-manganese austenitic and duplex stainless steel sheets N2 - Manganese alloyed stainless steels represent a cost-effective alternative to conventional CrNi- stainless steels due to strong fluctuations of the market prices for nickel seen during the last years. In CrMnNi steels, nickel is partially replaced by lower-cost manganese and small amounts of nitrogen for stabilization of the austenitic phase. This also brings benefits regarding the mechanical properties, as it results in an increased material strength. Laser beam welding of such materials was investigated for direct comparison with standard CrNi steels. Main emphasis was laid on finding adequate process parameters to achieve a stable welding process and obtain a good weld quality. Two different laser sources, a 4.4 kW Nd:YAG and a 5 kW CO2 laser, were used to weld 1.5 mm stainless steel sheets in continuous wave mode. A high-Mn austenitic (1.4376) and a lean duplex (1.4162) steel, as well as the standard austenitic (1.4301) and duplex (1.4362) grades were selected as test materials. Both butt and lap joint configurations were studied. Experiments were carried out systematically, varying the welding speed, laser power and focal point position in order to determine adequate process windows. The influence of the shielding gas type and flow rate on the process stability and the weld quality were investigated. The effects of weld edge preparation on the weld appearance and quality levels attained were also examined. The obtained welded joints were subjected to radiographic tests for detection of internal imperfections. Also a metallurgical characterization of the samples regarding the resulting phase composition or balance and hardness depending on the welding process parameters was conducted. Furthermore, tensile and potentiodynamic tests were performed to evaluate the mechanical and corrosion properties, respectively. The results provide an insight into the advantages and limitations of the laser beam welding process for joining high-manganese alloyed stainless steels. Conditions for the production of defect-free and corrosion-resistant welds having good mechanical properties could be determined. KW - Austenitic stainless steels KW - Corrosion KW - CO2 lasers KW - Duplex stainless steels KW - Laser welding KW - Manganese KW - Mechanical properties KW - Shielding gases KW - YAG lasers KW - Weldability PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 1/2 SP - 9 EP - 20 PB - Springer CY - Oxford AN - OPUS4-25404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Alexandrov, B. A1 - Rethmeier, Michael T1 - Low heat input gas metal arc welding for dissimilar metal weld overlays part III: hydrogen-assisted cracking susceptibility N2 - Dissimilar metal weld overlays of nickel-base alloys on low-alloy steel components are commonly used in the oil and gas, petrochemical, and power generation industries to provide corrosion and oxidation resistance in a wide range of service Environments and temperatures. Traditionally, dissimilar weld overlays are produced using cold or hot wire gas tungsten arc welding. This study aims to identify and evaluate potential advantages of low heat input gas metal arc welding processes over the conventional gas tungsten arc welding in the production of such overlays. Parts I and II of this publication series described characteristics of the heat-affected zone and the transition zone region of alloy 625 on grade 22 steel overlays. These results indicate a good resistance against hydrogen-assisted cracking, which is being verified within this third part of the publication series. To determine the hydrogen-assisted cracking susceptibility, welded samples are tested using the delayed hydrogen-assisted cracking test. Fractography is performed using scanning electron microscopy along with energy dispersive spectroscopy. The results confirm the suitability and efficiency of low heat input gas metal arc welding for dissimilar weld overlays. Variation of the postweld heat treatment procedure bears potential for improvement in this respect. KW - Low heat input GMA welding KW - Dissimilar metal weld overlays KW - Coarse-grained heat-affected zone KW - Grain size KW - Microstructure KW - Fusion zone KW - Nickel alloys PY - 2019 DO - https://doi.org/10.1007/s40194-018-0674-7 VL - 63 IS - 3 SP - 591 EP - 598 PB - Springer AN - OPUS4-48096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Javaheri, E. A1 - Pittner, Andreas A1 - Graf, B. A1 - Rethmeier, Michael T1 - Mechanical properties characterization of reisstance spot welded DP1000 steel under uniaxial tensile tests N2 - Resistance spot welding (RSW) is widely used in the automotive industry as the main joining method. Generally, an automotive body contains around 2000 to 5000 spot welds. Therefore, it is of decisive importance to characterize the mechanical properties of these areas for the further optimization and improvement of an automotive body structure. The present paper aims to introduce a novel method to investigate the mechanical properties and microstructure of the resistance spot weldment of DP1000 sheet steel. In this method, the microstructure of RSW of two sheets was reproduced on one sheet and on a bigger area by changing of the welding parameters, e. g. welding current, welding time, electrode force and type. Then, tensile tests in combination with digital Image correlation (DIC) measurement were performed on the notched tensile specimens to determine the mechanical properties of the weld metal. The notch must be made on the welded tensile specimen to force the fracture and elongation on the weld metal, enabling the characterization of its properties. Additionally, the parameters of a nonlinear isotropic material model can be obtained and verified by the simulation of the tensile specimens. The parameters obtained show that the strength of DP1000 steel and the velocity of dislocations for reaching the Maximum value of strain hardening, are significantly increased after RSW. The effect of sample geometry and microstructural inhomogeneity of the welded joint on the constitutive property of the weld metal are presented and discussed. KW - Mechanical properties KW - resistance spot welding KW - dual phase steel KW - digital image correlation PY - 2019 VL - 61 IS - 6 SP - 527 EP - 532 PB - Carl Hanser Verlag CY - München AN - OPUS4-48296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunner-Schwer, C. A1 - Petrat, T. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Highspeed-plasma-laser-cladding of thin wear resistance coatings: A process approach as a hybrid metal deposition-technology N2 - Plasma-Transferred-Arc (PTA) welding is a process that enables high deposition rates, but also causes increased thermal load on the component. Laser metal deposition (LMD) welding, on the other hand, reaches a high level of precision and thus achieves comparatively low deposition rates, which can lead to high processing costs. Combining laser and arc energy aims to exploit the respective advantages of both technologies. In this study, a novel approach of this process combination is presented using a PTA system and a 2 kW disk laser. The energy sources are combined in a common process zone as a high-speed plasma laser cladding technology (HPLC), which achieves process speeds of 10 m/min at deposition rates of 6.6 kg/h and an energy per unit length of 39 J/mm. KW - Highspeed-plasma-laser-cladding KW - Wear resistance KW - Deposition welding KW - Tungsten carbide KW - NiCrBSi PY - 2019 DO - https://doi.org/10.1016/j.vacuum.2019.05.003 SN - 0042-207X VL - 166 SP - 123 EP - 126 PB - Elsevier AN - OPUS4-48294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical and experimental investigation of thermo-fluid flow and element transport in electromagnetic stirring enhanced wire feed laser beam welding N2 - The introduction of electromagnetic stirring to laser beam welding can bring several beneficial effects e.g. element homogenization and grain refinement. However, the underlying physics has not been fully explored due to the absence of quantitative data of heat and mass transfer in the molten pool. In this paper, the influence of electromagnetic stirring on the thermo-fluid flow and element transport in the wire feed laser beam welding is studied numerically and experimentally. A three-dimensional transient heat transfer and fluid flow model coupled with dynamic keyhole, magnetic induction and element Transport is developed for the first time. The results suggest that the Lorentz force produced by an oscillating magnetic field and its induced eddy current shows an important influence on the thermo-fluid flow and the keyhole stability. The melt flow velocity is increased by the electromagnetic stirring at the rear and lower regions of molten pool. The keyhole collapses more frequently at the upper part. The additional Elements from the filler wire are significantly homogenized because of the enhanced forward and downward flow. The model is well verified by fusion line shape, high-speed images of molten pool and measured element distribution. This work provides a deeper understanding of the transport phenomena in the laser beam welding with magnetic field. KW - Thermo-fluid flow KW - Element transport KW - Laser beam welding KW - MHD KW - Numerical analysis PY - 2019 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2019.118663 VL - 144 SP - 118663 PB - Elsevier Ltd. AN - OPUS4-49299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Development of a novel optical measurement technique to investigate the hot cracking susceptibility during laser beam welding N2 - Using a novel optical measurement technique together with the optical flow algorithm, a two-dimensional deformation analysis during welding was conducted. The presented technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Additionally, the described procedure of the optical measurement allows the real material-dependent values of critical strain and strain rate characterizing the transition to hot cracking during laser welding processes to be determined. Furthermore, the above-mentioned technique is independet on the welding process, which means, it can be also used for arc welding processes. Dependency between the external strain rate and the critical local strain and strain rate has been observed. That is to say, the critical local strain and strain rate is increased with an increase of the strain rate.Moreover, this technique allows automatic identification of the cases that can be critical for the solidification crack formation by monitoring the state of strain on the crack-sensitive region within the mushy zone. KW - Optical measurment technique KW - Hot crack KW - Critical strain KW - Laser beam welding PY - 2019 DO - https://doi.org/10.1007/s40194-018-0665-8 SN - 0043-2288 VL - 63 IS - 2 SP - 435 EP - 441 PB - Springer Berlin Heidelberg CY - Berlin AN - OPUS4-47761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Avoidance of end crater imperfections at high-power laser beam welding of closed circumferential welds N2 - The present work deals with the development of a strategy for the prevention of end crater defects in high-power laser welding of thick-walled circumferential welds. A series of experiments were performed to understand the influence of the welding Parameters on the formation of end crater defects such as pores, cracks, root excess weld metal and shrinkage cavities in the overlap area. An abrupt switch-off of the laser power while closing the circumferential weld leads to a formation of a hole which passes through the whole welded material thickness. A laser power ramp-down causes solidification cracks which are initiated on the transition from full-penetration mode to partial penetration. Defocusing the laser beam led to promising results in terms of avoiding end crater defects. Cracks and pores in the overlap area could be effectively avoided by using defocusing techniques. A strategy for avoiding of end crater imperfections was tested on flat specimens of steel grade S355J2 with a wall thickness of between 8 mm and 10 mm and then transferred on the 10 mm thick pipe sections made of high-strength pipeline steel API5L-X100Q. KW - Laser beam welding KW - Circumferential weld KW - End crater PY - 2019 DO - https://doi.org/10.1007/s40194-019-00841-x SP - 1 PB - Springer AN - OPUS4-50270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Javaheri, E. A1 - Lubritz, J. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Mechanical Properties Characterization of Welded Automotive Steels N2 - Among the various welding technologies, resistance spot welding (RSW) and laser beam welding (LBW) play a significant role as joining methods for the automobile industry. The application of RSW and LBW for the automotive body alters the microstructure in the welded areas. It is necessary to identify the mechanical properties of the welded material to be able to make a reliable statement about the material behavior and the strength of welded components. This study develops a method by which to determine the mechanical properties for the weldment of RSW and LBW for two dual phase (DP) steels, DP600 and DP1000, which are commonly used for the automotive bodies. The mechanical properties of the resistance spot weldment were obtained by performing tensile tests on the notched tensile specimen to cause an elongation of the notched and welded area in order to investigate its properties. In order to determine the mechanical properties of the laser beam weldment, indentation tests were performed on the welded material to calculate its force-penetration depth-curve. Inverse numerical simulation was used to simulate the indentation tests to determine and verify the parameters of a nonlinear isotropic material model for the weldment of LBW. Furthermore, using this method, the parameters for the material model of RSW were verified. The material parameters and microstructure of the weldment of RSW and LBW are compared and discussed. The results show that the novel method introduced in this work is a valid approach to determine the mechanical properties of welded high-strength steel structures. In addition, it can be seen that LBW and RSW lead to a reduction in ductility and an increase in the amount of yield and tensile strength of both DP600 and DP1000. KW - Mechanical property KW - Laser beam welding KW - Dual phase steel KW - Resistance spot welding PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502269 DO - https://doi.org/10.3390/met10010001 VL - 10 IS - 1 SP - 1 EP - 20 PB - MDPI AN - OPUS4-50226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Rethmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. KW - Bulging effect KW - High power laser beam welding KW - Process simulation KW - Solidification KW - Hot cracking PY - 2019 DO - https://doi.org/10.2351/1.5096133 SN - 1042-346X SN - 1938-1387 VL - 31 IS - 2 SP - 022413-1 EP - 022413-7 PB - AIP Publishing AN - OPUS4-47848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Biegler, M. A1 - Rethmeier, Michael A1 - Böhne, Ch. A1 - Meschut, G. T1 - Investigation of liquid metal embrittlement of dual phase steel joints by electro-thermomechanical spot-welding simulation N2 - A 3D electro-thermomechanical model is established in order to investigate liquid metal embrittlement. After calibration to a dual phase steel of the 1000 MPa tensile strength class, it is used to analyse the thermo-mechanical system of an experimental procedure to enforce liquid metal embrittlement during resistance spot welding. In this procedure, a tensile stress level is applied to zinc coated advanced high strength steel samples during welding. Thereby, liquid metal embrittlement formation is enforced, depending on the applied stress level and the selected material. The model is suitable to determine and visualise the corresponding underlying stresses and strains responsible for the occurrence of liquid metal embrittlement. Simulated local stresses and strains show good conformity with experimentally observed surface crack locations. KW - RSW KW - LME KW - Advanced high strength steel KW - Zinc coated steel KW - Testing method KW - Dual phase steel KW - Cracking KW - Electro-thermomechnical model PY - 2019 DO - https://doi.org/10.1080/13621718.2019.1582203 SN - 1362-1718 SN - 1743-2936 VL - 24 IS - 7 SP - 624 EP - 633 PB - Taylor & Francis AN - OPUS4-47747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - Experimental and numerical assessment of weld pool behavior and final microstructure in wire feed laser beam welding with electromagnetic stirring N2 - Advantages such as element homogenization and grain refinement can be realized by introducing electromagnetic stirring into laser beam welding. However, the involved weld pool behavior and its direct role on determining the final microstructure have not been revealed quantitatively. In this paper, a 3D transient heat transfer and fluid flow model coupled with element transport and magnetic induction is developed for wire feed laser beam welding with electromagnetic stirring. The magnetohydrodynamics, temperature profile, velocity field, keyhole evolution and element distribution are calculated and analyzed. The model is well tested against the experimental results. It is suggested that a significant electromagnetic stirring can be produced in the weld pool by the induced Lorentz force under suitable electromagnetic parameters, and it shows important influences on the thermal fluid flow and the solidification parameter. The forward and downward flow along the longitudinal plane of the weld pool is enhanced, which can bring the additional filler wire material to the root of the weld pool. The integrated thermal and mechanical impacts of electromagnetic stirring on grain refinement which is confirmed experimentally by electron backscatter diffraction analysis are decoupled using the calculated solidification parameters and a criterion of dendrite fragmentation. KW - Magnetohydrodynamics KW - Weld pool behavior KW - Grain structure KW - Laser beam welding KW - Numerical simulation PY - 2019 DO - https://doi.org/10.1016/j.jmapro.2019.07.021 SN - 1526-6125 VL - 45 SP - 408 EP - 418 PB - Elsevier AN - OPUS4-48611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Khomich, P. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Assessment of thermal cycles by combining thermo-fluid dynamics and heat conduction in keyhole mode welding processes N2 - A numerical framework for simulation of the steady-state thermal behaviour in keyhole mode welding has been developed. It is based on the equivalent heat source concept and consists of two parts: computational thermo-fluid dynamics and heat conduction. The solution of the thermo-fluid dynamics problem by the finite element method for a bounded domain results in a weld pool interface geometry being the input data for a subsequent heat conduction problem solved for a workpiece by a proposed boundary element method. The main physical phenomena, such as keyhole shape, thermo-capillary and natural convection and temperature-dependent material properties are taken into consideration. The developed technique is applied to complete-penetration keyhole laser beam welding of a 15 mm thick low-alloyed steel plate at a welding speed of 33 mm/s and a laser power of 18 kW. The fluid flow of the molten metal has a strong influence on the weld pool geometry. The thermo-capillary convection is responsible for an increase of the weld pool size near the plate surfaces and a bulge formation near the plate middle plane. The numerical and experimental molten pools, cross-sectional weld dimensions and thermal cycles of the heat affected zone are in close agreement. KW - Welding process simulation KW - Thermo-fluid dynamics KW - Heat conduction KW - High power laser beam welding KW - Finite element method KW - Boundary element method PY - 2019 DO - https://doi.org/10.1016/j.ijthermalsci.2019.105981 SN - 1290-0729 VL - 145 SP - 105981, 1 EP - 10 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-48652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jokisch, T. A1 - Marko, A. A1 - Gook, S. A1 - Üstündag, Ö. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser Welding of SLM-Manufactured Tubes Made of IN625 and IN718 N2 - The advantage of selective laser melting (SLM) is its high accuracy and geometrical flexibility. Because the maximum size of the components is limited by the process chamber, possibilities must be found to combine several parts manufactured by SLM. An application where this is necessary, is, for example, the components of gas turbines, such as burners or oil return pipes, and inserts, which can be joined by circumferential welds. However, only a few investigations to date have been carried out for the welding of components produced by SLM. The object of this paper is, therefore, to investigate the feasibility of laser beam welding for joining SLM tube connections made of nickel-based alloys. For this purpose, SLM-manufactured Inconel 625 and Inconel 718 tubes were welded with a Yb:YAG disk laser and subsequently examined for residual stresses and defects. The results showed that the welds had no significant influence on the residual stresses. A good weld quality could be achieved in the seam circumference. However, pores and pore nests were found in the final overlap area, which meant that no continuous good welding quality could be accomplished. Pore formation was presumably caused by capillary instabilities when the laser power was ramped out. KW - Inconel 718 KW - Laser welding KW - Selective Laser Melting KW - Laser Powder Bed Fusion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489679 DO - https://doi.org/10.3390/ma12182967 SN - 1996-1944 VL - 12 IS - 18 SP - 2967, 1 EP - 15 PB - Multidisciplinary Digital Publishing Institute CY - Basel AN - OPUS4-48967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ö. A1 - Avilov, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Improvement of Filler Wire Dilution Using External Oscillating Magnetic Field at Full Penetration Hybrid Laser-Arc Welding of Thick Materials N2 - Hybrid laser-arc welding offers many advantages, such as deep penetration, good gap bridge-ability, and low distortion due to reduced heat input. The filler wire which is supplied to the process is used to influence the microstructure and mechanical properties of the weld seam. A typical problem in deep penetration high-power laser beam welding with filler wire and hybrid laser-arc welding is an insufficient mixing of filler material in the weld pool, leading to a non-uniform element distribution in the seam. In this study, oscillating magnetic fields were used to form a non-conservative component of the Lorentz force in the weld pool to improve the element Distribution over the entire thickness of the material. Full penetration hybrid laser-arc welds were performed on 20-mm-thick S355J2 steel plates with a nickel-based wire for different arrangements of the oscillating magnetic field. The Energy-dispersive X-ray spectroscopy (EDS) data for the distribution of two tracing elements (Ni and Cr) were used to analyze the homogeneity of dilution of the filler wire. With a 30° turn of the magnetic field to the welding direction, a radical improvement in the filler material distribution was demonstrated. This would lead to an improvement of the mechanical properties with the use of a suitable filler wire. KW - Thick materials KW - Hybrid laser-arc welding KW - Oscillating magnetic field KW - Electromagnetic stirring KW - Full penetration PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489644 DO - https://doi.org/10.3390/met9050594 SN - 2075-4701 VL - 9 IS - 5 SP - 594 PB - Multidisciplinary Digital Publishing Institute CY - Basel AN - OPUS4-48964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ö. A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Mechanical Properties of Single-pass Hybrid Laser Arc Welded 25 mm Thick-walled Structures Made of Fine-grained Structural Steel N2 - The presented study deals with the performing and mechanical testing of single pass hybrid laser-arc welds (HLAW) on 25 mm thick plates made of steel grade S355J2. One of the challenges have to be solved at full penetration HLAW of thick plates is the drop formation occurring due to the disbalances of the forces acting in the keyhole and on the melt pool surface. Such irregularities mostly limit the use of high-power laser beam welding or HLAW of thick-walled constructions. To overcome this problem, an innovative concept of melt pool support based on generating Lorentz forces in the weld pool is used in this work. This method allows to perform high quality welds without sagging even for welding of 25 mm thick plates in flat position at a welding speed of 0.9 m min-1. For the obtain of full penetrated welds a laser beam power of 19 kW was needed. A high V-impact energy of up to 160 J could be achieved at the test temperature of 0 °C. Even at the most critical part in the weld root an impact energy of 60 J in average could be reached. The tensile strength of the weld reaches that of the base material. An introduce of the HLAW process with electromagnetic support of the melt pool in the industrial practice is an efficient alternative to the time- and cost-intensive arc-based multi-layer welding techniques which are established nowadays for joining of thick-walled constructions. KW - Mechanical Properties KW - Hybrid Laser Arc Welding KW - Thick-walled Structures KW - Fine-grained Steel PY - 2019 DO - https://doi.org/10.1016/j.promfg.2019.08.016 SN - 2351-9789 VL - 36 SP - 112 EP - 120 PB - Elsevier B.V. AN - OPUS4-48969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhne, Chr. A1 - Meschut, G. A1 - Biegler, M. A1 - Frei, J. A1 - Rethmeier, Michael T1 - Prevention of liquid metal embrittlement cracks N2 - Advanced high strength steels are usually coated by a zinc layer for an increased resistance against corrosion. During the resistance spot welding of zinc coated steel grades, liquid metal embrittlement (LME)mayoccur. As a result, cracking inside and around the spot weld indentation is observable. The extent of LME cracks is influenced by a variety of different factors. In this study, the impact of the used electrode geometry is investigated over a stepwise varied weld time. A spot welding finite element simulation is used to analyse and explain the observed effects. Results show significant differences especially for highly increased weld times. Based on identical overall dimensions, electrode geometries with a larger working plane allow for longer weld times, while still preventing LME within the investigated material and maintaining accessibility. KW - Liquid metal embrittlement KW - Crack KW - Advanced high strength steels KW - Resistance spot welding KW - Electrode geometry PY - 2019 DO - https://doi.org/10.1080/13621718.2019.1693731 VL - 25 IS - 4 SP - 303 EP - 310 PB - Taylor & Francis AN - OPUS4-49833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition N2 - The laser-based direct energy deposition (DED) as a technology for additive manufacturing allows the production of near net shape components. Industrial applications require a stable process to ensure reproducible quality. Instabilities in the manufacturing process can lead to faulty components which do not meet the required properties. The DED process is adjusted by various parameters such as laser power, velocity, powder mass flow and spot diameter, which interact with each other. A frequently used comparative parameter in welding is the energy per unit length and is calculated from the laser power and the velocity in laser welding. The powder per unit length comparative parameter in the DED process has also be taken into account, because this filler material absorbs energy in addition to the base material. This paper deals with the influence of mass energy as a comparative parameter for determining the properties of additively manufactured parts. The same energy per unit length of 60 J/mm as well as the same powder per unit length of 7.2 mg/mm can be adjusted with different parameter sets. The energy per unit length and the powder per unit length determine the mass energy. The laser power is varied within the experiments between 400 W and 900 W. Energy per unit length and powder per unit length are kept constant by adjusting velocity and powder mass flow. Using the example of Inconel 718, experiments are carried out with the determined parameter sets. In a first step, individual tracks are produced and analyzed by means of micro section. The geometry of the tracks shows differences in height and width. In addition, the increasing laser power leads to a higher dilution of the base material. To determine the suitability of the parameters for additive manufacturing use, the individual tracks are used to build up parts with a square base area of 20x20 mm². An investigation by Archimedean principle shows a higher porosity with lower laser power. By further analysis of the micro sections, it can be seen that at low laser power, connection errors occur between the tracks. The results show that laser power, velocity and powder mass flow have to be considered in particular, because a constant mass energy can lead to different geometric as well as microscopic properties. KW - Direct energy deposition KW - Porosity KW - Inconel 718 KW - Additive manufacturing KW - Laser metal deposition PY - 2019 SN - 2351-9789 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-50007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaumann, P. A1 - Schürmann, K. A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Automatically Welded Tubular X-Joints for Jacket Substructures N2 - To increase the competitiveness of jacket substructures compared to monopiles a changeover from an individual towards a serial jacket production based on automated manufactured tubular joints combined with standardized pipes has to be achieved. Therefore, this paper addresses fatigue tests of automatically welded tubular X-joints focusing on the location of the technical fatigue crack. The detected location of the technical crack is compared to numerical investigations predicting the most fatigue prone notch considering the structural stress approach as well as the notch stress approach. Besides, the welding process of the automated manufactured tubular X-joints is presented. KW - Tubular X-joints KW - Fatigue tests KW - Technical crack detection KW - Local fatigue spproaches PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513228 DO - https://doi.org/10.1002/cepa.1140 VL - 3 IS - 3-4 SP - 823 EP - 828 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-51322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542262 DO - https://doi.org/10.1002/adem.202101333 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -