TY - JOUR A1 - Gook, Sergej A1 - El-Batahgy, Abdel-Monem A1 - Gumenyuk, Andrey A1 - Biegler, Max A1 - Rethmeier, Michael T1 - Application of Hybrid Laser Arc Welding for Construction of LNG Tanks Made of Thick Cryogenic 9% Ni Steel Plates JF - Lasers in Manufacturing and Materials Processing N2 - Hybrid laser-arc welding (HLAW) was applied for butt welding of 14.5 mm thick plates of ferritic cryogenic steel X8Ni9 containing 9% Ni, which is used for manufacturing storage and transport facilities of liquefied natural gas (LNG). The weld seam formation and the achievable metallurgical and mechanical properties of the hybrid welds were investigated experimentally for two types of filler wire, an austenitic wire dissimilar to the base metal (BM) and an experimentally produced matching ferritic wire. Safe penetration and uniform distribution of the austenitic filler metal in the narrow hybrid weld could only be achieved in the upper, arcdominated part of the weld. The pronounced heterogeneous distribution of the austenitic filler metal in the middle part and in the root area of the weld could not ensure sufficient notched impact toughness of the weld metal (WM). As a result, a decrease in the impact energy down to 17±3 J was observed, which is below the acceptance level of ≥34 J for cryogenic applications. In contrast, the use of a matching ferritic filler wire resulted in satisfactory impact energy of the hybrid welds of up to 134±52 J at the concerned cryogenic temperature of -196 °C. The obtained results contribute to an important and remarkable conversion in automated manufacturing of LNG facilities. In other words, the results will help to develop a new laser-based welding technology, where both quality and productivity are considered.The efficiency of the developed welding process has been demonstrated by manufacturing a prototype where a segment of the inner wall of large size LNG storage tank was constructed. In this concern, hybrid laser arc welding was conducted in both horizontal (2G) and vertical (3G) positions as a simulation to the actual onsite manufacturing. The prototype was fabricated twice where its quality was confirmed based on non-destructive and destructive examinations. KW - Hardness KW - Hybrid Laser arc Welding KW - 9% Ni Steel KW - Fusion zone size KW - Microstructure KW - Tensile Strength KW - Impact Absorbed Energy PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586080 DO - https://doi.org/10.1007/s40516-023-00229-2 SP - 1 EP - 22 PB - Springer Nature AN - OPUS4-58608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Pavlov, V. A1 - Volvenko, S. A1 - Rethmeier, Michael T1 - In situ determination of the critical straining condition for solidification cracking during laser beam welding JF - Procedia CIRP N2 - A self-restraint hot cracking test (free edge test) was used in combination with a novel optical measurement technique to determine the critical straining conditions for solidification cracking for the stainless steel grade 1.4828 (AISI 309). The Lucas-Kanade algorithm for the optical flow (OF) calculation was implemented to obtain the full-field displacement and then the full-field strain. The use of external laser illumination with appropriate filters allows to obtain good image quality with good contrast. The critical straining conditions required for solidification cracking can be obtained by means the proposed technique in the immediate vicinity of the solidification front. A very good repeatability was demonstrated for the used measurement technique. The critical straining conditions for solidification cracking for the tested steel und under this welding conditions has been detected KW - Laser beam welding KW - Solidification cracking KW - Critical strain KW - Critical strain rate KW - Optical flow PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513070 DO - https://doi.org/10.1016/j.procir.2020.09.104 SN - 2212-8271 VL - 94 SP - 666 EP - 670 PB - Elsevier AN - OPUS4-51307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -