TY - JOUR A1 - Gaul, Holger A1 - Brauser, Stephan A1 - Weber, Gert A1 - Rethmeier, Michael T1 - Methods to obtain weld discontinuities in spot-welded joints made of advanced high-strength steels N2 - Resistance spot welding is the major joining technique in mass car production. This applies in particular to high-strength steel and advanced high-strength steel (AHSS) joining of thin sheet steel components for lightweight body shell structures. Joining of AHSS in mass production might lead to weld discontinuities under certain circumstances. Those discontinuities in form of cracks might be an initial start of cracking in the spot-welded joints regarding fatigue loads. It is of great interest to figure out, if, in comparison to specimens without weld discontinuities, the crack initiating point changes and if the fatigue resistance might be reduced by the discontinuities. In this contribution, an overview of potential discontinuities is given. Their possible causes are discussed and means for their detection are highlighted. Among the possible causes of weld discontinuities, two major groups are distinguished: the welding parameters as primary influences in the welding process, and the production-specific influences as secondary ones. With emphasis on major cracks penetrating the weld nugget, these influences are analysed. Finally, a combination of extreme welding parameters with production-specific influences is chosen in order to establish a method which enables the preparation of fatigue test specimens with reproducible major cracks in different locations of the spot-welded joints. This method is than applied in order to prepare spot weld specimens for fatigue tests. KW - Cracking KW - Defects KW - Fatigue loading KW - High strength steels KW - Resistance spot welding PY - 2011 SN - 0043-2288 SN - 1878-6669 VL - 55 IS - 11/12 SP - 99 EP - 106 PB - Springer CY - Oxford AN - OPUS4-25026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Rethmeier, Michael A1 - Pepke, Lutz-Alexander A1 - Weber, Gert T1 - Influence of production-related gaps on strength properties and deformation behaviour of spot welded trip steel HCT690T N2 - In this study, the influence of production-related gaps on the shear tension strength and fatigue performance was investigated for resistance spot welded TRIP steel HCT690. Furthermore, the local strain distribution in shear tension test was calculated by the digital image correlation technique (DIC). The static shear tension strength was found to be almost independent of gaps up to 3 mm. The maximum local strain in the spot weld region however decreases depending on which sample side (deformed or undeformed) is considered. In addition, it has been ascertained that gaps of 3 mm lead to a significant drop in fatigue life compared to gap-free shear tension samples. This fact could be attributed to decreased stiffness, higher transverse vibration and higher rotation (θ) between the sheets as well as increased local stress calculated by 2 dimensional FE simulation. KW - Deformation KW - Fatigue life KW - Finite element analysis KW - Gap KW - Resistance spot welding KW - Shear strength PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 03-04 SP - 115 EP - 125 PB - Springer CY - Oxford AN - OPUS4-27590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babu, N. K. A1 - Brauser, S. A1 - Rethmeier, Michael A1 - Cross, C.E. T1 - Characterization of microstructure and deformation behaviour of resistance spot welded AZ31 magnesium alloy N2 - Resistance spot welds were prepared on 3 mm thick sheets of continuous cast and rolled AZ31 magnesium alloy. The microstructure and composition analysis of weld nugget, heat affected zone (HAZ) and base metal were examined using optical and scanning electron microscopy (HR-SEM and EDS/X). The resistance spot welded magnesium alloy joints consist mainly of weld nugget and HAZ. The nugget contains two different structures, i.e. the cellular-dendritic structure at the edge of the nugget and the equiaxed dendritic structure in the centre of the nugget. The structure transition is attributed to the changes of solidification conditions. In the HAZ, grain boundary melting occurred and grain boundaries became coarse. It has been shown that hardness reduction in the weld nugget and HAZ compared with base metal is evident due to dendritic microstructure and grain growth, respectively. The results showed that spot welded joints have failed in interfacial mode under torsion and tensile–shear loading conditions. Digital image correlation during tensile–shear testing showed that low surface strains occur in the interfacial failure mode, because fracture and deformation happened primarily in the nugget area. KW - Resistance spot welding KW - AZ31 magnesium alloy KW - Microstructure KW - Hardness KW - Torsion KW - Tensile–shear PY - 2012 DO - https://doi.org/10.1016/j.msea.2012.04.021 SN - 0921-5093 SN - 1873-4936 VL - 549 SP - 149 EP - 156 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-25924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brauser, Stephan A1 - Gebhardt, Moritz Oliver A1 - Rethmeier, Michael ED - Babu, S. S. ED - Bhadeshia, H.K. ED - Cross, C.E. ED - David, S.A. ED - DebRoy, T. ED - DuPont, J.N. ED - Koseki, T. ED - Liu, S. T1 - Influence of imperfections on the fatigue performance of resistance spot welded joints T2 - 9th International conference on trends in welding research CY - Chicago, Illinois, USA DA - 2012-06-04 KW - Resistance spot welding KW - Gaps KW - Cracks KW - Fatigue life KW - Simulation PY - 2013 SN - 978-1-62708-998-2 SP - 650 EP - 660 PB - ASM international AN - OPUS4-29056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rethmeier, Michael T1 - Influence of weld imperfections on the fatigue behaviour of resistance spot welded advanced high strength steels KW - Resistance spot welding KW - Gaps KW - Cracks KW - Fatigue life PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/AMR.891-892.1445 SN - 1022-6680 SN - 1662-8985 VL - 891-892 SP - 1445 EP - 1450 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-30099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Extrapolation Capability of an Artificial Neural Network Algorithm in Combination with Process Signals in Resistance Spot Welding of Advanced High-Strength Steels N2 - Resistance spot welding is an established joining process for the production of safetyrelevant components in the automotive industry. Therefore, consecutive process monitoring is essential to meet the high quality requirements. Artificial neural networks can be used to evaluate the process parameters and signals, to ensure individual spot weld quality. The predictive accuracy of such algorithms depends on the provided training data set, and the prediction of untrained data is challenging. The aim of this paper was to investigate the extrapolation capability of a multi-layer perceptron model. That means, the predictive performance of the model was tested with data that clearly differed from the training data in terms of material and coating composition. Therefore, three multi-layer perceptron regression models were implemented to predict the nugget diameter from process data. The three models were able to predict the training datasets very well. The models, which were provided with features from the dynamic resistance curve predicted the new dataset better than the model with only process parameters. This study shows the beneficial influence of process signals on the predictive accuracy and robustness of artificial neural network algorithms. Especially, when predicting a data set from outside of the training space. KW - Automotive KW - Artificial intelligence KW - Quality monitoring KW - Resistance spot welding KW - Quality assurance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539783 DO - https://doi.org/10.3390/met11111874 VL - 11 IS - 11 SP - 1 EP - 11 PB - MDPI AN - OPUS4-53978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Life Cycle Assessment of Fusion Welding Processes - A Case Study of Resistance Spot Welding Versus Laser Beam Welding N2 - The high amount of resource consumption of fusion welding processes offers the potential to reduce their environmental impact. While the driving forces are known froma qualitative perspective, the quantitative assessment of the crucial parameters is not a trivial task. Therefore, herein, a welding-specific methodology to utilize life cycle assessment as a tool for evaluating the environmental impact of fusion welding processes is presented. In this context, two welding processes, resistance spot welding and laser beam welding, are analyzed for two different use cases. These comprise the welding of shear test specimens and a cap profile made of electrogalvanized sheets of DC 05þ ZE (1.0312) as representative of an automotive application. For both welding processes, the main influences on the resulting environmental impact categories are evaluated and compared. The requirements for ecological efficient welding processes are discussed and implemented. KW - Resistance spot welding KW - Carbon dioxide footprint KW - Environmental impact categories KW - Laser beam welding KW - Life cycle assessment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566458 DO - https://doi.org/10.1002/adem.202101343 SN - 1438-1656 VL - 24 IS - 6 SP - 1 EP - 14 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Gert A1 - Thommes, H. A1 - Gaul, Holger A1 - Hahn, O. A1 - Rethmeier, Michael T1 - Resistance spot welding and weldbonding of advanced high strength steels KW - Resistance spot welding KW - High strength steel KW - Weldbonding KW - Widerstandspunktschweißen KW - Hochfester Stahl KW - Punktschweißkleben PY - 2010 DO - https://doi.org/10.1002/mawe.201000687 SN - 0933-5137 SN - 1521-4052 VL - 41 IS - 11 SP - 931 EP - 939 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-22948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Pepke, Lutz-Alexander A1 - Weber, Gert A1 - Rethmeier, Michael T1 - Deformation behaviour of spot-welded high strength steels for automotive applications N2 - Numerical simulation of component and assembly behaviour under different loading conditions is a main tool for safety design in automobile body shell mass production. Knowledge of local material behaviour is fundamental to such simulation tests. As a contribution to the verification of simulation results, the local deformation properties of spot-welded similar and dissimilar material joints in shear tension tests were investigated in this study for a TRIP steel (HCT690T) and a micro-alloyed steel (HX340LAD). For this reason, the local strain distribution was calculated by the digital image correlation technique (DIC). On the basis of the hardness values and microstructure of the spot welds, the differences in local strain between the selected material combinations are discussed. Additionally, the retained austenite content in the TRIP steel was analysed to explain the local strain values. Results obtained in this study regarding similar material welds suggest significant lower local strain values of the TRIP steel HCT690T compared to HX340LAD. One reason could be the decrease of retained austenite in the welded area. Furthermore, it has been ascertained that the local strain in dissimilar material welds decreases for each component compared with the corresponding similar material weld. KW - Resistance spot welding KW - Deformation behaviour KW - Advanced high strength steel KW - TRIP steel KW - Similar and dissimilar material spot weld KW - EBSD KW - SEM KW - Strain field PY - 2010 DO - https://doi.org/10.1016/j.msea.2010.07.091 SN - 0921-5093 SN - 1873-4936 VL - 527 IS - 26 SP - 7099 EP - 7108 PB - Elsevier CY - Amsterdam AN - OPUS4-21921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Weber, Gert A1 - Gaul, Holger A1 - Rethmeier, Michael ED - Kolleck, R. T1 - Joining of ultra high strength steels for lightweight body shell design in automobile manufacturing T2 - 50th IDDRG anniversary conference - Tools and technologies for the processing of ultra high strength steels CY - Graz, Austria DA - 2010-05-31 KW - Advanced high strength steels KW - Resistance spot welding KW - Weldbonding KW - Lightweight body shell design KW - Process reliability PY - 2010 SN - 978-3-85125-108-1 DO - https://doi.org/10.3217/978-3-85125-108-1-094 SP - 885 EP - 898 PB - Verlag der Technischen Universität Graz CY - Graz, Austria AN - OPUS4-22472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -