TY - JOUR A1 - Schempp, Philipp A1 - Cross, C.E. A1 - Häcker, Ralf A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Influence of grain size on mechanical properties of aluminium GTA weld metal N2 - Grain refinement is an important possibility to enhance the mechanical properties such as strength, ductility and toughness of aluminium weld metal. In this study, grain refinement was achieved through the addition of commercial grain refiner Al Ti5B1 to gas tungsten arc weld metal of the aluminium alloys 1050A (Al 99.5) and 5083 (Al Mg4.5Mn0.7). The grain refiner additions led to a significant reduction of the weld metal mean grain size (Alloy 1050A, 86 %; Alloy 5083, 44 %) with a change in grain shape from columnar to equiaxed. Tensile tests showed for Alloy 5083 that the weld metal's ductility can be increased through grain refinement. No improvement in weld metal strength (i.e. yield strength and ultimate tensile strength) was observed. Furthermore, tear tests with notched specimens revealed that the resistance against initiation and propagation of cracks in the weld metal can be enhanced through grain refinement. The toughness was observed to increase clearly by grain refinement in weld metal of commercial pure Al (Alloy 1050A). In Alloy 5083 weld metal, the toughness was not improved through grain refinement, likely because of a semi-continuous network of brittle intermetallic phases that facilitate crack propagation. KW - GTA welding KW - Aluminium KW - Grain size KW - Tensile tests KW - Dynamic fracture tests PY - 2013 DO - https://doi.org/10.1007/s40194-013-0026-6 SN - 0043-2288 SN - 1878-6669 VL - 57 IS - 3 SP - 293 EP - 304 PB - Springer CY - Oxford AN - OPUS4-28065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Syed, A.A. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - De, A. T1 - Modeling of gas metal arc welding process using an analytically determined volumetric heat source N2 - High peak temperature and continuous deposition of electrode droplets in the weld puddle inhibit real-time monitoring of thermal cycles and bead dimensions in gas metal arc welding. A three-dimensional numerical heat transfer model is presented here to compute temperature field and bead dimensions considering a volumetric heat source to account for the transfer of arc energy into the weld pool. The heat source dimensions are analytically estimated as function of welding conditions and original joint geometry. The deposition of electrode material is modeled using deactivation and activation of discrete elements in a presumed V-groove joint geometry. The computed values of bead dimensions and thermal cycles are validated with the corresponding measured results. A comparison of the analytically estimated heat source dimensions and the corresponding numerically computed bead dimensions indicate that the former could rightly serve as the basis for conduction heat transfer based models of gas metal arc welding process. KW - Gas metal arc welding KW - Heat conduction KW - Volumetric heat source KW - Experimental validation PY - 2013 DO - https://doi.org/10.2355/isijinternational.53.698 SN - 0915-1559 SN - 1347-5460 VL - 53 IS - 4 SP - 698 EP - 703 PB - ISIJ AN - OPUS4-28074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Gook, Sergej A1 - Gumenyuk, Andrey ED - Turichin, G. T1 - Prospects of application of laser-GMA hybrid welding for manufacturing of large diameter longitudinal welded high strength steel pipes T2 - VII. International scientific and technical conference 'Beam technologies & laser application' CY - Saint-Petersburg, Russia DA - 2012-09-18 KW - High strength steel KW - Laser hybrid welding KW - Modified spray arc KW - Longitudinal weld KW - Pipeline PY - 2013 SP - 130 EP - 140 PB - Publishing house SPbSPU AN - OPUS4-28040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gebhardt, Moritz Oliver A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Turichin, G. T1 - Laser-MSG-hybrid welding of thick walled precision pipes T2 - VII. International scientific and technical conference 'Beam technologies & laser application' CY - Saint-Petersburg, Russia DA - 2012-09-18 PY - 2013 SP - 235 EP - 247 PB - Publishing house SPbSPU AN - OPUS4-28041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, André A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser beam welding of aluminium alloys under the influence of an electromagnetic field N2 - During laser beam welding of aluminum alloys an electromagnetic field may favour pore outgassing through the top oxide layer. High frequencies cause a small penetration depth and thus exert a stabilizing effect on the weld surface. The point at which the laser beam between the two magnetic poles hits the workpiece surface is crucial to the influence of the magnetic field on the weld surface roughness. Using analyzed parameters for different laser points of application cause a change in weld surface roughness could be observed. The weld surface roughness could be reduced by 50%. The outgassing effect in terms of a reduction of pores could be observed for all parameter sets investigated. T2 - Lasers in manufacturing conference 2013 CY - Munich, Germany DA - 13.05.2013 KW - Electromagnetically controlled laser beam welding KW - Surface roughness KW - Porosity prevention KW - Aluminium alloys PY - 2013 DO - https://doi.org/10.1016/j.phpro.2013.03.045 SN - 1875-3892 VL - 41 SP - 4 EP - 11 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-28147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Numerical calculation of residual stress development of multi-pass gas metal arc welding N2 - In various applications, welding-induced residual stresses have a substantial impact on the integrity of welded constructions. Tensile residual stress can promote stress-corrosion cracking, brittle fracture, and reduces the fatigue life in service, as well as influences component design due to critical stress concentrations within the component. In the present paper, a six bead multi-pass gas metal arc weld of 20 mm thick structural steel S355J2+N is experimentally and numerically investigated. The studies include transient 2D and 3D numerical calculations which consider temperature-dependent material properties, phase transformations, 'thermal' tempering, transformation plasticity, volume change due to phase transformation, an elastic–plastic material model, and isotropic strain hardening. The experimentally determined and calculated residual stresses are in a good agreement. Furthermore, the influence of the preheat and interpass temperature on welding-induced residual stresses is shown in the present investigation. KW - Welding simulation KW - Gas metal arc welding KW - Welding-induced residual stress KW - Multi-pass welding KW - Sensitivity analysis PY - 2012 DO - https://doi.org/10.1016/j.jcsr.2011.08.011 SN - 0143-974x VL - 72 SP - 12 EP - 19 PB - Elsevier CY - Oxford AN - OPUS4-25629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tölle, Florian A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Reduction of residual stresses in laser beam welds by means of defocused laser beams N2 - Longitudinal residual stresses in beam welds ranging at the value of the local yield strength can diminish the lifespan of components. To extend the service life of welds special methods of welding residual stress reduction were developed earlier which are however not effective for beam welds in complex component geometries. Application of beam welding sources for postwelding heat treatment of components has become a flexible tool for reducing longitudinal stresses in beam welds. Such heat treatment in a specific transversal distance to the weld by a defocused beam results in huge stress reductions depending on the used process parameters. Experimental results for ferritic and austenitic steels reveal weld stress reductions to up to compressive stresses. For different materials and diverse material thicknesses special process parameter regions have to be used in this procedure. At a transmission component this procedure shows a stress reduction by >300 MPa. KW - Post-welding heat treatment KW - Stress reduction KW - Residual stress KW - Beam welding PY - 2012 DO - https://doi.org/10.1179/1362171812Y.0000000019 SN - 1362-1718 SN - 1743-2936 VL - 17 IS - 5 SP - 381 EP - 385 PB - Maney CY - London AN - OPUS4-26000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Ji A1 - Schwenk, Christopher A1 - Wu, Chuan Song A1 - Rethmeier, Michael T1 - Predicting the influence of groove angle on heat transfer and fluid flow for new gas metal arc welding processes N2 - This article studies the three dimensional transient weld pool dynamics and the influence of groove angle on welding of low carbon structural steel plates using the ForceArc® process. The deformation of the weld bead is also calculated with an accurate coupling of the heat transfer with fluid flow through continuity, momentum and the energy equations combined with the effect of droplet impingement, gravity, electromagnetic force, buoyancy, drag forces and surface tension force (Marangoni effect). Different angles of V groove are employed under the same welding parameters and their influence on the weld pool behavior and weld bead geometry is calculated and analyzed, which is needed for subsequent calculations of residual stress and distortion of the workpiece. Such a simulation is an effective way to study welding processes because the influence of all welding parameters can be analyzed separately with respect to heat transfer, weld pool dynamic, and microstructure of the weld. Good agreement is found between the predicted and experimentally determined weld bead cross-section and temperature cycles. It is found that the main flow pattern is more or less the same although the groove angle increases, but it will evoke larger amount of fluid to flow downward to get deeper penetration. KW - Numerical simulation KW - Gas metal arc welding KW - Weld pool dynamics KW - Fluid flow KW - V groove PY - 2012 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.046 SN - 0017-9310 VL - 55 IS - 1-3 SP - 102 EP - 111 PB - Elsevier CY - Amsterdam AN - OPUS4-26001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Gert A1 - Rethmeier, Michael T1 - Spot welding and weldbonding of high strength steels for lightweight auto body manufacturing T2 - EUROJOIN 8 - 8th European conference CY - Pula, Croatia DA - 2012-05-24 KW - Spot welding KW - Weldbonding KW - High strength steels KW - Process reliability KW - Mechanical properties of joints PY - 2012 SP - 633 EP - 643 AN - OPUS4-26383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Noack, T. A1 - Jüttner, S. T1 - Influence of welding-induced cracks on the fatigue strength of resistance-spot-welded joints made of high-strength austenitic steel N2 - In the rough conditions in the fabrication of automobile bodies, it is not always possible to avoid welding-induced imperfections such as cracks during the resistance spot welding of high-strength steels. In this respect, the influence of such cracks on the fatigue strength particularly of modern high-strength austenitic steels is not sufficiently well-known at present. The influence of welding cracks with various positions and formations was therefore investigated within the framework of this paper. In this case, the analysis of the standardised stiffness courses of specimens and the comparison of the numbers of failure stress cycles served to prove that the surface cracks produced without any spatter in the centre, interfacial region and peripheral region of the weld nugget do not have any negative influence on the fatigue strength of the high-strength austenitic material investigated here. Specimens which were manufactured with welding spatter and exhibit cracks in the peripheral region show considerably higher numbers of failure stress cycles than crack-free reference specimens. PY - 2012 SN - 1612-3433 VL - 11 IS - 4 SP - 232 EP - 235 PB - DVS - German Welding Society CY - Düsseldorf AN - OPUS4-26346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -