TY - JOUR A1 - Biegler, M. A1 - Wang, J. A1 - Kaiser, L. A1 - Rethmeier, Michael T1 - Automated Tool-Path Generation for Rapid Manufacturing of Additive Manufacturing Directed Energy Deposition Geometries JF - Steel research international N2 - In additive manufacturing (AM) directed energy deposition (DED), parts are built by welding layers of powder or wire feedstock onto a substrate with applications for steel powders in the fields of forging tools, spare parts, and structural components for various industries. For large and bulky parts, the choice of toolpaths influences the build rate, the mechanical performance, and the distortions in a highly geometry-dependent manner. With weld-path lengths in the range of hundreds of meters, a reliable, automated tool-path generation is essential for the usability of DED processes. This contribution presents automated tool-path generation approaches and discusses the results for arbitrary geometries. Socalled “zig-zag” and “contour-parallel” processing strategies are investigated and the tool-paths are automatically formatted into machine-readable g-code for experimental validation to build sample geometries. The results are discussed in regard to volume-fill, microstructure, and porosity in dependence of the path planning according to photographs and metallographic cross-sections. KW - Porosity KW - Path planning KW - Mechanical properties KW - Laser metal deposition KW - Additive manufacturing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510454 DO - https://doi.org/10.1002/srin.202000017 VL - 91 IS - 11 SP - 2000017 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-51045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding JF - Journal of Laser Applications N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly nonlinear and multicoupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modeling. A 3D transient multiphysical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics, and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph, and the element distribution from the energy dispersive x-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2020 DO - https://doi.org/10.2351/7.0000069 VL - 32 IS - 2 SP - 022026-1 EP - 022026-9 AN - OPUS4-50874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Elsner, B. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Geometric distortion-compensation via transient numerical simulation for directed energy deposition additive manufacturing JF - Sience and Technology of Welding and Joining N2 - Components distort during directed energy deposition (DED) additive manufacturing (AM) due to the repeated localised heating. Changing the geometry in such a way that distortion causes it to assume the desired shape – a technique called distortion-compensation – is a promising method to reach geometrically accurate parts. Transient numerical simulation can be used to generate the compensated geometries and severely reduce the amount of necessary experimental trials. This publication demonstrates the simulation-based generation of a distortioncompensated DED build for an industrial-scale component. A transient thermo-mechanical approach is extended for large parts and the accuracy is demonstrated against 3d-scans. The calculated distortions are inverted to derive the compensated geometry and the distortions after a single compensation iteration are reduced by over 65%. KW - DED KW - Welding simulation KW - Dimensional accuracy KW - Additive manufacturing KW - Laser metal deposition KW - LMD PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1743927 SP - 1 EP - 8 PB - Taylor & Francis AN - OPUS4-50877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and numerical study on the influence of the laser hybrid parameters in partial penetration welding on the solidification cracking in the weld root JF - Welding in the World N2 - In this study, the influence of the welding speed, the arc power, and the laser focal position on the solidification crack formation for partial penetration laser hybrid–welded thick-walled plates was investigated. The solidification cracking in the weld root is a result of interaction between metallurgical and geometrical and thermomechanical factors. Experimentally, a direct correlation between the welding speed and the crack number was observed. That is by reducing the welding velocity, the crack number was decreased. The focal position shows also a significant influence on the crack number. By focusing the laser on the specimen surface, the crack number has been significantly diminished. The wire feed speed showed a very slight influence on the crack formation. That is due to the large distance between the critical region for cracking and the arc region. The numerical model shows a high stress concentration in the weld root for both components (vertical and transversal). Numerically, the reduced welding speed showed a strong impact on stress, as the model demonstrated a lower stress amount by decreasing the welding speed. The metallurgical factors, such as the assumed accumulation of the low-melting eutectics in the weld root, should be a contribution for solidification cracking, where the tensile stress is acting. KW - Laser hybrid welding KW - Solidification cracking KW - Partial penetration welding KW - Weld root KW - Numerical simulation PY - 2020 DO - https://doi.org/10.1007/s40194-020-00847-w VL - 64 SP - 501 EP - 511 PB - Springer AN - OPUS4-50625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Kantenbeschichtung für das Laserstrahlschweißen dickwandiger Duplexstahl-Bleche JF - Schweißen und Schneiden N2 - Duplexstähle finden in vielen industriellen Bereichen Anwendung, dies ist nicht zuletzt ihren hervorragenden Eigenschaften, wie einer guten Korrosionsbeständigkeit, einer guten Duktilität bei trotzdem hoher Festigkeit, zuzuschreiben. Diese Eigenschaften werden jedoch durch das Schweißen, vor allem das Laserstrahlschweißen, beeinträchtigt, da die hohen Abkühlraten zu erhöhten Ferritanteilen im Schweißgut führen. Mit Hilfe eines zweistufigen Prozesses, bei dem die Kanten der Fügepartner vor dem Schweißen mit nickelhaltigem Pulver beschichtet werden, soll dieses Problem für dickwandige Bleche gelöst werden. In diesem Zusammenhang wurden verschiedene Prozessparameter für den Laser-Pulver-Auftragschweiß-Prozess untersucht sowie die defektfreie Schweißung dieser beschichteten Kanten mit unterschiedlichen Prozessgasen. KW - Pufferschichten KW - Laser-Pulver-Auftragschweißen KW - Laserstrahlschweißen KW - Duplex PY - 2020 VL - 72 IS - 7 SP - 382 EP - 387 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-50145 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, Victor A1 - Bachmann, Marcel A1 - Khomich, Pavel A1 - Rethmeier, Michael T1 - МОДЕЛИРОВАНИЕ ГИДРОДИНАМИЧЕСКИХ И ТЕПЛОВЫХ ПРОЦЕССОВ ПРИ ЛАЗЕРНОЙ СВАРКЕ СО СКВОЗНЫМ ПРОПЛАВЛЕНИЕМ JF - СВАРОЧНОЕ ПРОИЗВОДСТВО N2 - Разработана модель физических процессов при сварке плавлением на основе концепции эквивалентных источников теплоты. Модель включает в себя две части: термогидродинамику сварочной ванны и теплопроводность свариваемого тела вне ванны. В задаче термогидродинамики учитываются температурные зависимости свойств материала, форма парогазового канала, термокапиллярная и естественная конвекция, фазовые превращения и другие физические явления.Приведено решение задачи термогидродинамики методом конечных элементов на примере сварки стальной пластины толщиной 15 мм со сквозным проплавлением лазерным лучом (по технологии "замочная скважина"). Показано, что термокапиллярная конвекция жидкого металла является основной причиной сложной выпукло-вогнутой формы границы ванны с увеличенными размерами в приповерхностных областях. Получено удовлетворительное совпадение расчетных и экспериментальных размеров сварочной ванны. KW - ЛАЗЕРНАЯ СВАРКА KW - СВАРОЧНАЯ ВАННА KW - ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ KW - ГИДРОДИНАМИКА KW - КОНВЕКЦИЯ KW - ТЕПЛОПРОВОДНОСТЬ KW - ТЕМПЕРАТУРНОЕ ПОЛЕ KW - МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ PY - 2020 SN - 0491-6441 SP - 58 EP - 69 AN - OPUS4-50290 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Javaheri, E. A1 - Kumala, V. A1 - Javaheri, A. A1 - Rawassizadeh, R. A1 - Lubritz, J. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Quantifying Mechanical Properties of Automotive Steels with Deep Learing Based Computer Vision Algorithms JF - Metals N2 - This paper demonstrates that the instrumented indentation test (IIT), together with a trained artificial neural network (ANN), has the capability to characterize the mechanical properties of the local parts of a welded steel structure such as a weld nugget or heat affected zone. Aside from force-indentation depth curves generated from the IIT, the profile of the indented surface deformed after the indentation test also has a strong correlation with the materials’ plastic behavior. The profile of the indented surface was used as the training dataset to design an ANN to determine the material parameters of the welded zones. The deformation of the indented surface in three dimensions shown in images were analyzed with the computer vision algorithms and the obtained data were employed to train the ANN for the characterization of the mechanical properties. Moreover, this method was applied to the images taken with a simple light microscope from the surface of a specimen. Therefore, it is possible to quantify the mechanical properties of the automotive steels with the four independent methods: (1) force-indentation depth curve; (2) profile of the indented surface; (3) analyzing of the 3D-measurement image; and (4) evaluation of the images taken by a simple light microscope. The results show that there is a very good Agreement between the material parameters obtained from the trained ANN and the experimental uniaxial tensile test. The results present that the mechanical properties of an unknown steel can be determined by only analyzing the images taken from its surface after pushing a simple indenter into its surface. KW - Deep learning KW - Computer vision KW - Artificial neural network KW - Clustering KW - Mechanical properties KW - High strength steels KW - Instumented indentation test PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503038 DO - https://doi.org/10.3390/met10020163 VL - 10 IS - 2 SP - 163 PB - MDPI AN - OPUS4-50303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool JF - AIP Journal of Laser Applications N2 - The geometrical characteristics of the weld end crater are commonly used as a means of validating numerical results in welding simulations. In this paper, an analytical model is developed for calculating the cooling stage of the welding process after the moving energy source is turned off. Solutions for various combinations of heat sources and heated bodies are found. It is shown that after turning off the Energy source, additional melting of the base material in the longitudinal direction may occur due to the overheated liquid metal. The developed technique is applied to complete-penetration keyhole laser beam welding of 2 mm thick austenitic stainless-steel plate 316L at a Welding speed of 20 mm/s and a laser power of 2.3 kW. The results show a theoretical increase in the weld end crater length of up to 19% compared to the length of the steady-state weld pool. It is found that at the moment of switch off, the weld end crater center, where solidification of the liquid metal ends, is shifted from the heat source axis toward the weld pool tail. The solidification rate and the direction of crystallization of the molten material during the welding process and those in the weld end crater differ significantly. A good agreement between the computational results and the welding experiments is achieved. KW - Weld end crater KW - Steady-state weld pool KW - Mathematical modeling KW - Solidification KW - Laser beam welding PY - 2020 DO - https://doi.org/10.2351/7.0000068 VL - 32 IS - 2 SP - 022024-1 EP - 022024-6 PB - AIP Publishing AN - OPUS4-50767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bakir, Nasim A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Lamé curve approximation for the assessment of the 3D temperature distribution in keyhole mode welding processes JF - AIP Journal of Laser Applications N2 - A novel approach for the reconstruction of an equivalent volumetric heat source from a known weld pool shape is proposed. It is based on previously obtained weld pool geometries from a steady-state thermo-fluid dynamics simulation. Hereby, the weld pool dimensions are obtained under consideration of the most crucial physical phenomena, such as phase transformations, thermo-capillary convection, natural convection, and temperature-dependent material properties. The algorithm provides a time and calibration efficient way for the reproduction of the weld pool shape by local Lamé curves. By adjusting their parameters, the identification of the finite elements located within the weld pool is enabled. The heat input due to the equivalent heat source is assured by replacing the detected nodes’ temperature by the melting temperature. The model offers variable parameters making it flexible and adaptable for a wide range of workpiece thicknesses and materials and allows for the investigation of transient thermal effects, e.g., the cooling stage of the workpiece. The calculation times remain acceptably short especially when compared to a fully coupled process simulation. The computational results are in good agreement with performed complete-penetration laser beam welding experiments. KW - Lamé curves approximation KW - Equivalent heat source KW - Thermal cycles KW - Numerical modeling KW - Keyhole mode welding PY - 2020 DO - https://doi.org/10.2351/7.0000076 VL - 32 IS - 2 SP - 022042-1 EP - 022042-8 PB - AIP Publishing AN - OPUS4-50768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Influence of welding parameters on electromagnetic supported degassing of die-casted and wrought aluminum JF - Journal of Laser Applications N2 - Laser beam welding of aluminum die casting is challenging. A large quantity of gases (in particular, hydrogen) is absorbed by aluminum during the die-cast manufacturing process and is contained in the base material in solved or bound form. After remelting by the laser, the gases are released and are present in the melt as pores. Many of these metallurgic pores remain in the weld seam as a result of the high solidification velocities. The natural (Archimedean) buoyancy is not sufficient to remove the pores from the weld pool, leading to process instabilities and poor mechanical properties of the weld. Therefore, an electromagnetic (EM) system is used to apply an additional buoyancy component to the pores. The physical mechanism is based on the generation of Lorentz forces, whereby an electromagnetic pressure is introduced into the weld pool. The EM system exploits the difference in electrical conductivity between poorly conducting pores (inclusions) and the comparatively better conducting aluminum melt to increase the resulting buoyancy velocity of the pores. Within the present study, the electromagnetic supported degassing is investigated in dependence on the laser beam power, welding velocity, and electromagnetic flux density. By means of a design of experiments, a systematic variation of these parameters is carried out for partial penetration laser beam welding of 6mm thick sheets of wrought aluminum alloy AlMg3 and die-cast aluminum alloy AlSi12(Fe), where the wrought alloy serves as a reference. The proportion of pores in the weld seams is determined using x-ray images, computed tomography images, and cross-sectional images. The results prove a significant reduction of the porosity up to 70% for both materials as a function of the magnetic flux density. T2 - ICALEO 2019 CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser beam welding KW - Electromagnetic supported degassing KW - Die-casted aluminum PY - 2020 DO - https://doi.org/10.2351/7.0000064 VL - 32 IS - 2 SP - 022031-1 EP - 022031-8 PB - AIP Publishing AN - OPUS4-50728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -