TY - JOUR A1 - Gook, S. A1 - Krieger, S. A1 - Gumenyuk, Andrey A1 - El-Batahgy, A. M. A1 - Rethmeier, Michael T1 - Notch impact toughness of laser beam welded thick sheets of cryogenic nickel alloyed steel X8Ni9 JF - Procedia CIRP N2 - The paper deals with the investigations of the impact toughness of laser beam welded 14.5 mm thick sheets made of cryogenic steel X8Ni9 as a function of preheating. This 9% nickel alloyed steel is widely used in the liquefied natural gas (LNG) industry. An application of highly efficient welding processes such as high-power laser beam welding (LBW) in LNG sector requires an understanding of the interactions between the LBW process parameters and weld properties, in particular the impact toughness. The results show that the original fine-grained martensitic microstructure of the base metal (BM) is significantly changed by melting and crystallization during the LBW, what can lead to a decrease in the impact toughness of the weld metal (WM) below the required level. An optimal preheating temperature range leads to the favorable thermal welding cycle and is of remarkable importance for maintaining the notch impact toughness of laser beam welded joints of these thick steel sheets. A parameter window was identified in which V-notch impact toughness comparable to that of the BM at -196 °C was achieved. KW - Cryogenic steel KW - Laser beam welding KW - Preheating KW - Welding thermal cycle KW - Microstructure KW - Hardness KW - V-notch impact toughness PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513250 DO - https://doi.org/10.1016/j.procir.2020.09.095 VL - 94 SP - 627 EP - 631 PB - Elsevier B.V. AN - OPUS4-51325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser-arc welding of thick-walled pipe segments with optimization of the end crater JF - Procedia CIRP N2 - The study deals with the application of the high-power hybrid-laser arc welding process on up to 15 mm thick pipe segments with the intention to avoid end crater imperfections during closing of the circumferential welds, where the pipes were turned during welding in 1G- and 2Gpositions. Different techniques such as laser power ramp-down, abrupt switch-off of the laser power and change of the magnification of the laser spot diameter and defocusing of the laser beam relative to the workpiece were tested to remove the laser energy from the process. It could be shown that a high defocusing of the optic system above 40 mm with a resulting beam diameter > 2.9 mm in a short overlap length of approx. 20 mm leads to the formation of a cup-shaped weld seam, which is preferred for avoidance of cracks and pores in the end crater. A laser optics with motor-driven lens system was used for the welding experiments to defocuse the laser beam without changing the position of the arc. KW - Hybrid laser-arc welding KW - Circumferential weld KW - Thick-walled steel KW - Single-pass welding KW - End crater PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513260 DO - https://doi.org/10.1016/j.procir.2020.09.106 VL - 94 SP - 676 EP - 679 PB - Elsevier B.V. AN - OPUS4-51326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study of additional element transport in wire feed laser beam welding JF - Procedia CIRP N2 - The transport phenomena in the wire feed laser beam welding are investigated numerically. A three-dimensional transient heat transfer and fluid flow model coupled with free surface tracing and element transport is developed. A ray-tracing method with local grid refinement algorithm is used to calculate the multiple reflections and Fresnel absorption on the keyhole wall. The filler material flows backward along the lateral side of the weld pool, and subsequently flows forward along the longitudinal plane. The occurrence of the bulging phenomenon may further prevent the downward transfer of the additional elements to the root of the weld pool. KW - Laser beam welding KW - Element transport KW - Filler wire KW - Numerical modelling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513271 DO - https://doi.org/10.1016/j.procir.2020.09.129 VL - 94 SP - 722 EP - 725 PB - Elsevier B.V. AN - OPUS4-51327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Karkhin, V. A1 - Rethmeier, Michael T1 - On the relationship between the bulge effect and the hot cracking formation during deep penetration laser beam welding JF - Procedia CIRP N2 - Recent studies have confirmed the widening of the weld pool interface, known as a bulge effect, during deep penetration high power laser beam welding. The link between such geometric particularities of the weld pool shape and the hot cracking phenomena is significant. The present work seeks to extend the level of understanding by investigating their relationship. A coupled multiphysics, multiscale numerical framework is developed, comprising a series of subsequent analyses. The study examines the influences of the bulge on the three most dominant effects causing hot cracking, namely the thermal cycles, the mechanical loading, and the local microstructure. The bulge in the weld pool shape forms approximately in the middle of the plate, thus correlating with the location of hot cracking. It increases the hot cracking susceptibility by enhancing the three dominant effects. The numerical results are backed up by experimental data. T2 - 11th CIRP Conference on Photonic Technologies [LANE 2020] KW - Hot cracking KW - Bulge effect KW - Numerical modelling KW - Laser beam welding KW - Deep penetration PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512783 DO - https://doi.org/10.1016/j.procir.2020.09.002 SN - 2212-8271 VL - 94 SP - 5 EP - 10 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-51278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Pavlov, V. A1 - Volvenko, S. A1 - Rethmeier, Michael T1 - In situ determination of the critical straining condition for solidification cracking during laser beam welding JF - Procedia CIRP N2 - A self-restraint hot cracking test (free edge test) was used in combination with a novel optical measurement technique to determine the critical straining conditions for solidification cracking for the stainless steel grade 1.4828 (AISI 309). The Lucas-Kanade algorithm for the optical flow (OF) calculation was implemented to obtain the full-field displacement and then the full-field strain. The use of external laser illumination with appropriate filters allows to obtain good image quality with good contrast. The critical straining conditions required for solidification cracking can be obtained by means the proposed technique in the immediate vicinity of the solidification front. A very good repeatability was demonstrated for the used measurement technique. The critical straining conditions for solidification cracking for the tested steel und under this welding conditions has been detected KW - Laser beam welding KW - Solidification cracking KW - Critical strain KW - Critical strain rate KW - Optical flow PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513070 DO - https://doi.org/10.1016/j.procir.2020.09.104 SN - 2212-8271 VL - 94 SP - 666 EP - 670 PB - Elsevier AN - OPUS4-51307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Distortion-based validation of the heat treatment simulation of Directed Energy Deposition additive manufactured parts JF - ScienceDirect N2 - Directed energy deposition additive manufactured parts have steep stress gradients and an anisotropic microstructure caused by the rapid thermo-cycles and the layer-upon-layer manufacturing, hence heat treatment can be used to reduce the residual stresses and to restore the microstructure. The numerical simulation is a suitable tool to determine the parameters of the heat treatment process and to reduce the necessary application efforts. The heat treatment simulation calculates the distortion and residual stresses during the process. Validation experiments are necessary to verify the simulation results. This paper presents a 3D coupled thermo-mechanical model of the heat treatment of additive components. A distortion-based validation is conducted to verify the simulation results, using a C-ring shaped specimen geometry. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to compare the distortion of the samples with different post-processing histories. KW - Directed Energy Deposition KW - Additive Manufacturing KW - Heat Treatment KW - Numerical Simulation KW - Finite Element Method PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513153 DO - https://doi.org/10.1016/j.procir.2020.09.146 VL - 94 SP - 362 EP - 366 PB - Elsevier B.V. AN - OPUS4-51315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Application of a C-ring Geometry to validate the Stress Relief Heat Treatment Simulation of Additive Manufactured Austenitic Stainless Steel Parts via Displacement JF - HTM Journal of Heat Treatment and Materials N2 - Directed energy deposition is a metal additive manufacturing process that builds parts by joining material in a layer-by-layer fashion on a substrate. Those parts are exposed to rapid thermo-cycles which cause steep stress gradients and the layer-upon-layer manufacturing fosters an anisotropic microstructure, therefore stress relief heat treatment is necessary. The numerical simulation can be used to find suitable parameters for the heat treatment and to reduce the necessary efforts to perform an effective stress relieving. Suitable validation Experiments are necessary to verify the results of the numerical simulation. In this paper, a 3D coupled thermo-mechanical model is used to simulate the heat treatment of an additive manufactured component to investigate the application of a C-ring geometry for the distortion-based validation of the numerical simulation. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to quantify the distortion after each process step. KW - Additive manufacturing KW - Directed energy deposition KW - Laser KW - Heat treatment KW - Numerical simulation PY - 2020 DO - https://doi.org/10.3139/105.110417 VL - 75 IS - 4 SP - 248 EP - 259 PB - Carl Hanser Verlag AN - OPUS4-51318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Entwicklung des hybriden Auftragschweißens als leistungsfähigen Bechichtungsprozess für Korrosions- und Verschleißschutzschichten JF - Schweißen und Schneiden N2 - Dieser Beitrag stellt Ergebnisse der Untersuchungen zum Auftragschweißen als Plasma-Laserstrahl-Hybrid-Prozess dar. Es hat sich gezeigt, dass ein Laserstrahl, der in einer gemeinsamen Prozesszone mit einem Plasma-Pulver-Auftragschweißprozess vorlaufend angeordnet ist, diesem Prozess eine erhebliche Geschwindigkeitssteigerung sowie eine Verbesserung der Stabilität ermöglicht. Der Hybrid-Prozess konnte mit Verschleißschutzwerkstoffen sowie dem Korrosionsschutzwerkstoff Inconel 625 bei Vorschubgeschwindigkeiten von bis zu 10 m/min erfolgreich validiert werden. Im Hinblick auf die aktuellen Entwicklungen zu Hochgeschwindiglceits-Laserstrahlauftragschweißen kann der Plasma-Laserstrahl-Hybrid-Prozess zwischen diesen und den konventionellen Verfahren eingeordnet werden. KW - Auftragschweißen KW - Hybridschweißen KW - Laserstrahlschweißen KW - Schutzgasschweißen PY - 2020 SN - 0036-7184 VL - 72 IS - 8 SP - 474 EP - 475 AN - OPUS4-51321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhne, Chr. A1 - Meschut, G. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Avoidance of liquid metal embrittlement during resistance spot welding by heat input dependent hold time adaption JF - Science and Technology of Welding and Joining N2 - Liquid metal embrittlement (LME) cracking can occur during resistance spot welding (RSW) in zinc-coated advanced high-strength steels (AHSS) for automotive production. In this study, a methodological variation of hold time is performed to investigate the process-related crack influence factors. A combination of numerical and experimental investigations confirms, that the extent of heat dissipation and re-heating of the sheet surface can be influenced and thus the degree of crack formation can be controlled in a targeted manner by the parameterisation of the hold time. The temperature and stress history of crack-free and crack-afflicted spot welds are analysed and a conclusion on the borders defining the LME active region is derived. KW - Liquid metal embrittlement KW - Crack KW - Advanced high-strength steels KW - Resistance spot welding KW - Hold time KW - Heat input KW - Simulation PY - 2020 DO - https://doi.org/10.1080/13621718.2020.1795585 SN - 1362-1718 VL - 25 IS - 7 SP - 617 EP - 624 PB - Taylor Francis Online AN - OPUS4-51096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Numerische Simulation im 3D-Druck JF - Stahl und Eisen N2 - Die numerische Simulation hilft, Probleme bei additiven Bauprozessen früh zu erkennen und Optimierungspotentiale auszuschöpfen. Ziel ist, im additiven Auftragschweißen (DED) die Zahl der nötigen Versuche durch Vorhersagen zu verringern und Prozessgrößen zu visualisieren. Eine besondere Anwendung der Simulation ist die Generierung verzugskompensierter Geometrien: Durch die Berechnung des Bauteilverzugs kann die Geometrie vor dem Bauen so verändert werden, dass sie mit Verzug die gewünschte Toleranz erreicht. So kann Zerspanvolumen und Aufmaß reduziert werden. KW - Schweißsimulation KW - FEM KW - Auftragschweißen KW - Additive Fertigung KW - Verzug PY - 2020 IS - 4 SP - 45 EP - 48 AN - OPUS4-51097 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -