TY - CONF A1 - Kreutzbruck, Marc A1 - Neubauer, Andreas A1 - Pelkner, Matthias A1 - Reimund, Verena T1 - Adapted GMR array used in magnetic flux leakage inspection T2 - 18th WCNDT - World conference on nondestructive testing (Proceedings) N2 - GMR sensors are increasingly used for magnetic surface inspection due to their high sensitivity and high spatial resolution. In case of simple planar or cylindrical shaped components, the GMR-based inspection procedure can be automated easily. In order to reduce the inspection time we present a GMR-based NDT-system consisting of a yoke and a coil as a local magnetization unit. This way the global magnetization step and, if necessary, the corresponding demagnetization cycle can be avoided reducing the number of working steps. Using a local probe we measured plates, bearings, and rails, each of which containing real fatigue cracks and reference artificial cracks of different depths and orientations. Cracks with a depth of 40 ìm could be resolved with a signalto- noise ratio of about 20. A reduction of the measuring time can be obtained using a sensor array. We present an optimized sensor array for nondestructive testing application, where gradiometric arranged GMR layers were fabricated on a board with up to 48 GMR sensors. Each sensor detects the vertical field gradient. In our example the baseline was chosen to be 250 ìm which efficiently suppress external background fields without losing sensitivity for the detection of surface breaking defects. T2 - 18th WCNDT - World conference on nondestructive testing CY - Durban, South Africa DA - 2012-04-16 KW - Flux leakage testing KW - GMR-Sensors KW - Sensor arrays PY - 2012 SN - 978-0-620-52872-6 SP - 1 EP - 8 (Paper 498) AN - OPUS4-26351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pelkner, Matthias A1 - Neubauer, Andreas A1 - Blome, Mark A1 - Reimund, Verena A1 - Thomas, Hans-Martin A1 - Kreutzbruck, Marc ED - Chady, T. ED - Gratkowski, S. ED - Takagi, T. ED - Udpa, S.S. T1 - Flux leakage measurements for defect characterization using NDT adapted GMR sensors T2 - Electromagnetic nondestructive evaluation (XIV) N2 - High-precision magnetic field sensors are of increasing interest in non destructive testing (NDT). In particular GMR-sensors (giant magneto resistance) are qualified because of their high sensitivity, high signal-to-noise ratio and high spatial resolution. We performed magnetic flux leakage measurements of artificial cracks with a GMR-gradiometer and a 3-axes GMR-magnetometer. Cracks of a depth of 44 μm still could be detected with a sufficient high signal-to-noise ratio. A semi-analytic magnetic dipole model was used for swiftly predicting magnetic stray fields. The reliable reconstruction based on measurements of artificial rectangular-shaped defects is demonstrated. KW - GMR KW - NDT KW - Magnetic flux leakage KW - Reconstruction PY - 2011 SN - 978-1-60750-749-9 SN - 1383-7281 N1 - Serientitel: Studies in applied electromagnetics and mechanics – Series title: Studies in applied electromagnetics and mechanics VL - 35 SP - 217 EP - 224 PB - IOS Press CY - Amsterdam, The Netherlands AN - OPUS4-25374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pelkner, Matthias A1 - Neubauer, Andreas A1 - Reimund, Verena A1 - Kreutzbruck, Marc T1 - Routes for GMR-sensor design in non-destructive testing JF - Sensors N2 - GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT) applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL) distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of µm sized defects a gradiometer base line of 250 µm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial µm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents. KW - Giant magneto resistance KW - Non-destructive testing KW - Magnetic flux leakage KW - Sensor array PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-271325 DO - https://doi.org/10.3390/s120912169 SN - 1424-8220 VL - 12 IS - 9 SP - 12169 EP - 12183 PB - MDPI CY - Basel AN - OPUS4-27132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pelkner, Matthias A1 - Neubauer, Andreas A1 - Reimund, Verena A1 - Kreutzbruck, Marc ED - Thompson, D. O. ED - Chimenti, D. E. T1 - Local magnetization unit for GMR array based magnetic flux leakage inspection T2 - Review of progress in quantitative nondestructive evaluation, volume 31 N2 - GMR sensors are increasingly used for magnetic surface inspection due to their high sensitivity and high spatial resolution. In case of simple planar or cylindrical shaped components, the GMR-based inspection procedure can be automated easily. We present GMR measurements of real fatigue cracks. In addition, we present a probe design using a local magnetization unit and commercially available GMR sensors. The design was carried out by means of finite-element method (FEM) simulations. Using the local probe we measured bearings containing artificial reference cracks of different depths and orientations. Cracks with a depth of 40 µm could be resolved with a signal-to-noise ratio better than 6. A further reduction of the measuring time can be obtained using a sensor array. For this purpose we present a study of the optimized size of the sensing GMR-layers for a NDE-adapted sensor array. The geometric sensor parameters were investigated through simulations of the magnetic flux leakage of surface cracks using an analytic model. T2 - 38th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Burlington, VT, USA DA - 2011-07-17 KW - GMR KW - Magnetic flux leakage KW - NDE KW - Sensor array PY - 2012 SN - 978-0-7354-1013-8 DO - https://doi.org/10.1063/1.4716332 SN - 0743-0760 SN - 0094-243X N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings IS - 1430 SP - 1005 EP - 1012 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-26107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -