TY - JOUR A1 - Weigel, Sandra A1 - Gehrke, M. A1 - Recknagel, Christoph A1 - Stephan, D. T1 - Identification and quantification of additives in bituminous binders based on FTIR spectroscopy and multivariate analysis methods JF - Materials and Structures N2 - Bitumen is a crucial building material in road construction, which is exposed to continuously higher stresses due to higher traffic loads and changing climatic conditions. Therefore, various additives are increasingly being added to the bitumen complicating the characterisation of the bituminous binder, especially concerning the reuse of reclaimed asphalt. Therefore, this work aimed to demonstrate that the combination of Fourier transform infrared (FTIR) spectroscopy with attenuated total reflexion (ATR) technique and multivariate evaluation is a very wellsuited method to reliable identify and quantify additives in bituminous binders. For this purpose, various unmodified and modified binders, directly and extracted from laboratory and reclaimed asphalts, were investigated with FTIR-ATR spectroscopy. The determined spectra, pre-processed by standard normal variate (SNV) transformation and the determination of the 1st derivation, were evaluated using factor Analysis (FA), linear discriminant analysis (LDA) and partial least square regression (PLSR). With this multivariate evaluation, first, a significant model with a very high hit rate of over 90% was developed allowing for the identification of styrene-butadiene copolymers (SBC), ethylene-copolymer bitumen (ECB) and different waxes (e.g. amide and Fischer-Tropsch wax) even if the additives do not show any additional peaks or the samples are multi-modified. Second, a quantification of the content is possible for SBC, ECB, and Amide wax with a mean error of RMSE B 0.4 wt% and a coefficient of determination of R2[90%. Based on these results, FTIR identification and quantification of additives in bituminous binders is a very promising method with a great potential. KW - Bituminous binders KW - FTIR-ATR KW - Multivariate evaluation KW - Identification and quantification of additives KW - Polymers KW - Waxes PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534877 DO - https://doi.org/10.1617/s11527-021-01763-1 VL - 54 IS - 4 SP - 1 EP - 9 PB - Springer AN - OPUS4-53487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallau, Wilma A1 - Recknagel, Christoph A1 - Smales, Glen Jacob T1 - Structural silicone sealants after exposure to laboratory test for durability assessment JF - Journal of Applied Polymer Science N2 - During the service life of structural sealant glazing (SSG) facades, the loadbearing capacity of the silicone bonds needs to be guaranteed. Laboratory Tests can assess the durability of SSG-systems based on mechanical characteristics of the bond after simultaneous exposure to both climatic and mechanical loads. This article studies how the material characteristics of two common structural sealants are affected by laboratory and field exposure. Dynamic mechanical Analysis (DMA) confirms a reduction in the dynamic modulus of exposed Silicone samples. Results from thermogravimetric analysis, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and small-angle X-ray scattering/wide-angle X-ray scattering show differences between the two sealants and indicate no/minor changes in the composition and morphology of the laboratory and field exposed sealants. Mechanical characterization methods, such as DMA, and tensile and shear testing of the structural bond, are shown to be sensitive toward the combined climatic and mechanical loadings, and are hence suitable for studying degradation mechanisms of structural sealants. KW - Aging KW - Analytical methods KW - Fatigue KW - Silicone elastomer KW - Structural sealant glazing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527217 DO - https://doi.org/10.1002/app.50881 VL - 138 IS - 35 SP - 50881 PB - Wiley AN - OPUS4-52721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallau, Wilma A1 - Recknagel, Christoph T1 - Test methodology for performance assessment of structural sealant glazing systems at superimposed mechanical and climatic loading JF - Polymer Testing N2 - Reliable performance of structural sealant glazing (SSG) systems is necessary to utilise advantages of SSG in glass facades. Conventional durability assessment of structural sealant joints is based on separated weathering tests and empirical fatigue testing. This work presents a new test methodology for performance assessment of SSGjoints at simultaneous weathering and two-dimensional mechanical loading. The climatic and mechanical load function were derived from common loading scenarios according to a worst case approach. A System test specimen, resembling a common SSG-joint, was exposed to 24 h of combined loading in a custom-designed test facility. From the recorded mechanical system response, characteristic parameters were evaluated to assess the performance of the system at varying climatic and mechanical conditions. These experimental results reveal effects of ambient conditions, previous loading and deformation Amplitude peaks on the system response. The proposed test methodology opens up for new performance-related approaches in durability testing. KW - Structural sealant glazing KW - Performance assessment KW - Durability testing KW - Hysteresis measurement KW - Superimposed loading PY - 2019 DO - https://doi.org/10.1016/j.polymertesting.2019.106030 SN - 0142-9418 VL - 79 SP - 106030, 1 EP - 15 PB - Elsevier AN - OPUS4-48871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallau, Wilma A1 - Recknagel, Christoph T1 - Durability Assessment of Structural Sealant Glazing Systems applying a Performance Test Method JF - The Journal of Adhesion N2 - During the service life of a Structural Sealant Glazing (SSG) facade, its silicone bond is exposed to climatic, chemical, and mechanical loads. While current durability assessment methods schedule separate test programmes for accelerated weathering and fatigue, the presented test applies mechanical loading and weather cycling simultaneously to simulate 50 years of use. Specifically designed medium-scale system specimens resemble a common SSG-bond. Displacement-controlled sinusoidal load cycles in two load directions subject these specimens to tensile, compression and shear loads. Weathering comprises temperature and humidity cycles, UV-radiation, and application of water and detergent. During testing, the forces transmitted by the system specimens are continuously measured for performance assessment. The resulting system response reveals mechanical performance characteristics like elastic moduli and dissipated energies which decrease during exposure, indicating stress relaxation and degradation. Two common structural sealants were tested. After testing, sections of the system specimens were subjected to tensile and shear tests for mechanical characterisation. Strengths and moduli are notably reduced by combined loading compared to those of reference and weathered specimens. Hardness and visual inspections of the bond correlate with the performance and bond characteristics. The approach introduced in this article provides a basis for life cycle assessment of SSG-systems. KW - Structural sealant glazing KW - Cyclic weathering KW - Mechanical loading KW - Artificial ageing KW - Durability assessment PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519172 DO - https://doi.org/10.1080/00218464.2020.1840985 VL - 98 IS - 5 SP - 464 EP - 487 PB - Taylor & Francis Group AN - OPUS4-51917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Braun, Ulrike A1 - Recknagel, Christoph T1 - Short communication: Fire risks of burning asphalt JF - Fire and materials N2 - Eyewitnesses describe burning pavement surfaces in extreme fire scenarios. However, it was believed that the pavement plays a negligible role in comparison to other items feeding such an extreme fire at the same time. The asphalt mixtures used differ widely, thus raising the question as to whether this conclusion holds for all kinds of such materials. Three different kinds of asphalt mixtures were investigated with the aim of benchmarking the fire risks. Cone calorimeter tests are performed at an irradiance of 70kWm-2. All three investigated asphalts burn in extreme fire scenarios. The fire response (fire load, time to ignition, maximum heat release rate and smoke production) is quite different and varies by factors of up to 10 when compared to each other. The fire load per mass is always very low due to the high content of inert minerals, whereas the effective heat of combustion of the volatiles is quite typical of non-flame retarded organics. The heat release rate and fire growth indices are strongly dependent on the fire residue and thus the kind of mineral filler used. Comparing with polymeric materials, the investigated Mastic Asphalt and Stone Mastic Asphalt may be called intrinsically flame resistant, whereas the investigated Special Asphalt showed a pronouncedly greater fire risk with respect to causing fire growth and smoke. Thus the question is raised as to whether the use of certain kinds of asphalts in tunnels must be reconsidered. Apart from the binder used, the study also indicates varying the kind of aggregate as a possible route to eliminate the problem. KW - Asphalt KW - Cone calorimeter KW - Fire behaviour PY - 2010 DO - https://doi.org/10.1002/fam.1027 SN - 0308-0501 SN - 1099-1018 VL - 34 IS - 7 SP - 333 EP - 340 PB - Heyden CY - London AN - OPUS4-22172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -